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Problem and Motivation
Surrogate Models and Fixed-Location Forecasting

• Fixed-location forecasting allows for surrogate predictions of                
non-gridded or sparse data
➢ Not constrained to the numerical model resolutions

➢ Useful in predicting observations for sensor locations

• Numerical models can take a long time to generate high-resolution 
predictions
➢ Surrogate create short-term predictions on demand

• Hyperparameter optimization was shown to be time inefficient
➢ Grid and Random searches showed existence of improved results

• Although promising, previously did not compare similar methodologies
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Contribution
A Comparison of Methodologies Using a Non-Linear PDE

✓Explored surrogate prediction capability of fixed-locations for the Cahn-Hilliard PDE

✓Compares convex and non-convex ratio-coupled losses directly

✓First time direct comparisons of hyperparameter searches for ratio-coupled loss function 

✓ Introduces a novel way to use the optimized-λ approach

✓ Justifies further research into surrogate models for approximating previously unseen time series
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Methodology
The Cahn-Hilliard Equation

• The Cahn-Hilliard equation models the phase separation process of binary mixtures

• Often used in fluid mechanics to model droplet formation and density of atoms

• In modern work, is coupled with Navier-Stokes equations 

• This work investigates surrogate forecasting of fixed-locations in this equation space
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Methodology
The Cahn-Hilliard Dataset
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Fixed meta-features describe 
space and time information

Concentration is the sole 
prediction target – is coupled 
at training time



Methodology
Model Architecture and Training Specifics
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Methodology
Loss Function Definitions
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Convex ratio-coupled loss

Ratio-coupled loss

Residuals captured for 
the coupled features

Huber loss: g(ŷ,y)



Methodology
Ratio-Coupled Physics-Regularized Loss Function
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𝐥𝐨𝐬𝐬 =  𝚫𝟏 ∗ 𝝀 + (𝚫𝟐 ∗ (𝟏 − 𝝀))

Numerical
Model

Observations
Numerical 

Data
Surrogate

𝚫𝟏 = |ෝ𝒚 − 𝒚𝒏𝒖𝒎| 𝚫𝟐 = |ෝ𝒚 − 𝒚𝒐𝒃𝒔|

𝝀 𝚫𝟏 𝚫𝟐

0.0 0% 100%

0.5 50% 50%

1.0 100% 0%



Methodology
Ratio-Coupled Physics-Regularized Loss Function
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Methodology
Explored Hyperparameter Searches
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Hyperparameter 
Search

Implementation Details

Grid

Uses a range of λ hyperparameter values at predetermined 
intervals in λ ∈ [0, 1] with a fixed step size of 0.1 such that 
all λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are 
tested.

Random
20 random λ values are selected from a uniform distribution 
with a precision of 0.01.

Optimized
The λ values are optimized during the training process by 
minimizing loss. Uses the convex loss function. Slowly 
refines to ‘best’ data coupling. 

Optimized*
Uses the result of the optimized algorithm and uses this 
statically with the non-convex loss.

Bayes

There are 8 initial random λ values chosen and evaluated. 
Uses expected value to select next choices. A total of 30 
iterations are completed.
The final model is trained using the full number of epochs.



Results
Top Ranked Results and Search Technique Comparison
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Results
Average Forecast Error and Example Forecast
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Conclusion
Practical Implications of Results
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• Comparisons between search techniques provide guidance on how to find the best λ

• Optimized search might not always give an optimal result
• Training can be somewhat unstable
• But… Resulting λ values are representative of Gaussian noise in the data 
• Suggested order to try when under time constraints:

➢ Optimized - Static Optimized - Bounded Random

• Special mention to Bayes search
• Small improvements could make this viable on small problems

• Using λ and a ratio-coupled loss is still better than when no data is combined



Conclusion
Future Investigations
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1. Stabilize training of convex loss function
• ML-related tasks (early stopping, special architectures, etc.)

• Separate convex and non-convex loss in the same training loop

2. Validation on new datasets
• More “real-world” data to compare against

• 2D timeseries investigations (sparse predictions from available observations…)

• Uncover why optimized search works well on some data but not others

3. Investigation into different noise patterns
• Gaussian distribution gives good results, but would Uniform or Poisson? 

• Which is a good approximator of missing data samples? 



Questions?
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