
Combining Flows and Rules in a
Low-Code Platform for Smart Water
Management
Jens Nicolay*, Bjarno Oeyen*✉, Samuel Ngugi Ndung’u*, Thierry Renaux*,
Maxime Démarest**, Boud Verbeiren**, Wolfgang De Meuter*

*: **: Funded by:

Brussels, Belgium Brussels, Belgium Brussels, Belgium

✉: bjarno.oeyen@vub.be

About the presenter

Bjarno Oeyen
PhD Student @ Vrije Universiteit Brussel, Belgium

● Reactive Programming & Reactive Streams
● Programming Language Design
● Virtual Machines

Software Languages Lab
Research lab active in the design, implementation and
application of better languages to support the software
engineering process.

Context: The Urban Water Management Domain

Hydria
Hydria ensures the public sanitation of urban waste
water in the Brussels-Capital Region, the collection of
waste water and the regulation of its flow in the
collectors, and monitors rainfall and runoff in collectors
and streams.

Context: The Urban Water Management Domain

Environmental Impact

Costly Preventive and
Curative Maintenance

Costly Semi-manual
Operation

Combined Sewer Overflow

= Domain Experts

Use Cases

Pre-processing used to be
performed “by hand” with

UC1: Pre-Validation of Rainfall
Measurements

Intricate logic to detect
manual calibration events

UC2: Real-Time Monitoring of
Surface Water Qualities

Spikes

Threshold Violation

Send out an alert (e.g., by ✉) for
unexpected sensor data

Drawbacks of the “old” approach

= “low code”

= tedious
= error-prone
= not performed on live data

Can we do better with real code?

[*] M. Burnett, C. Cook, and G. Rothermel, “End-user software engineering,”
Commun. ACM, vol. 47, no. 9, pp. 53–58, Sep. 2004.

Spreadsheets are one of the most widely
used tools for low-code programming [*]

Problem Statement

Flow-Based Programming

● Easy to understand (visual)

● Often used for data-processing pipelines

Rule-Based Programming

● Better at expression correlation between events

● Based on declarative if-then rules

rainfallAtStationOtherThan(T, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 rainfall(T, MM_OTHER, S_ID_OTHER),
 (S_ID ϧа S_ID_OTHER),
 (MM_OTHER ϧа 0).

suspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM > 2),
 not rainfallAtStationOtherThan(T, S_ID).

unsuspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM > 2),
 not suspiciousRainfall(T, MM, S_ID).

unsuspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM Ӝ2 ٮ). D

at
al

og

Problem Statement

Flow-Based Programming

● Poor Abstraction of Sub-tasks

Complexity of a “box” varies
High-level and low-level logic within the same
visual language

● Poor Visualisation of Correlation

Either “correlation” is built-in into a component,
or a special operator. But with which semantics?

Rule-Based Programming

● Complexity of State Management
Running out-of-memory by the continuous
aggregation of facts in the fact base

● Poor Fit for Imperative Actions
Not declarative, break the rule-based model

● Poor Mobility of Rules
Most systems employ a single (shared) fact base

rainfallAtStationOtherThan(T, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 rainfall(T, MM_OTHER, S_ID_OTHER),
 (S_ID ϧа S_ID_OTHER),
 (MM_OTHER ϧа 0).

suspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM > 2),
 not rainfallAtStationOtherThan(T, S_ID).

unsuspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM > 2),
 not suspiciousRainfall(T, MM, S_ID).

unsuspiciousRainfall(T, MM, S_ID) ϥЬ
 rainfall(T, MM, S_ID),
 (MM Ӝ2 ٮ). D

at
al

og

A Low-Code Platform for Domain Experts

Flow-Based Programming

+

Rule-Based Programming

+

Visual Programming Language

SWAMP
Smart WAter Management Platform

SWAMP Platform combines the power
of Flow-Based Programming and
Rule-Based Programming

with a user-friendly visual language for
domain experts.

SWAMP
Smart WAter Management Platform

Approach for SWAMP

● Rule-based Specification of Sub-tasks
Rules components allow for describing
“low-level” reasoning

● Opt-in Statefulness
Specialised rule components that do not
persist data

● Restricted Imperative Actions
Imperative actions (I/O) with source and sink
components

● Modular Fact Bases for Rules
Each rule component is standalone

Flows, Relations, Datasets

Platform hosts flows

Status

Start/Stop

Edit

Facts in flows are typed Datasets

Or build your
own!

Uploaded, or
created by flows

Native
relations

(fact types)
for sensors

Flow-Based Programming in RuleFlow

Sources:
Produce data

Operators:
Transform data

Sinks:
Consume data

Subflows:
User-Defined
Components

Reusable Flow-Based Abstractions: Subflows

Pseudo sources
(= incoming on the
deployment-side) Pseudo sinks

(= outgoing on the
deployment-side)

Rocks: Visual Rule-Based Programming

Logic programming with visual
blocks (rules + blocks = rocks)

Expresses low-level logic

Support for “local
relations” as well (not

exported)

Technology Stack

● SaaS Cloud Platform hosted on our (Software

Languages Lab) infrastructure

● Plans to expand / transition

● Prototypical implementation built in TypeScript

○ Deno (back-end)

○ Next.js (front-end)

-> ReactFlow for Flow Canvas

-> Blockly for Rocks Editor

Results

● Hydria experimented with designing surface water
monitoring flows on the platform (flows for flows).

● +20 real flows defined
Data Intake & Real-Time Monitoring, used as part
of Hydria’s decision-making process

○ UC1: Pre-Validation

○ UC2: Detecting Spikes & Threshold Violations

● Currently in a “service contract” for bug-fixing
purposes

Flow-based and rule-based paradigms
are complementary

When combined with a
visual language…

= SWAMP

Combining Flows and Rules in a
Low-Code Platform for Smart Water
Management
Jens Nicolay*, Bjarno Oeyen*✉, Samuel Ngugi Ndung’u*, Thierry Renaux*,
Maxime Démarest**, Boud Verbeiren**, Wolfgang De Meuter*

*: **: Funded by:

Brussels, Belgium Brussels, Belgium Brussels, Belgium

✉: bjarno.oeyen@vub.be

Future Work

1. Linking Flow
Definition and Use

2. Flow Versioning 3. Hot-swapping of
Stateful Components

Solution
Warn “subflows” where
they are being used to
ensure compatibility.

Problem
Flows change over time. Subflows might break.

Problem
Flow changes require
re-starting. Resets state,
replaying events (costly).

Solution
Explain “why” subflows
are (no longer)
compatible. And if
needed, allow to use a
“pinned” version.

Solution
Integrate old state in the
new flow deployment.
But how?

