Combining Flows and Rules in a Low-Code Platform for Smart Water Management

Jens Nicolay^{*}, <u>Bjarno Oeyen</u>^{*™}, Samuel Ngugi Ndung'u^{*}, Thierry Renaux^{*}, Maxime Démarest^{**}, Boud Verbeiren^{**}, Wolfgang De Meuter^{*}

Bjarno Oeyen

PhD Student @ Vrije Universiteit Brussel, Belgium

- Reactive Programming & Reactive Streams
- Programming Language Design
- Virtual Machines

Software Languages Lab

Research lab active in the **design**, **implementation** and **application** of better **languages** to support the software engineering process.

Hydria

Hydria ensures the **public sanitation** of urban waste water in the Brussels-Capital Region, the **collection** of waste water and the **regulation** of its flow in the collectors, and **monitors** rainfall and runoff in collectors and streams.

Context: The Urban Water Management Domain

= Domain Experts

Environmental Impact

Costly Preventive and Curative Maintenance

Costly Semi-manual Operation

Combined Sewer Overflow

Intricate logic to detect **manual** calibration events

Pre-processing used to be performed "by hand" with

UC2: Real-Time Monitoring of Surface Water Qualities

Send out an alert (e.g., by ≥) for *unexpected* sensor data

Spreadsheets are one of the most widely used tools for low-code programming [*]

- = tedious
- = error-prone
- = not performed on live data

Can we do better with real code?

Drawbacks of the "old" approach

[*] M. Burnett, C. Cook, and G. Rothermel, "End-user software engineering," Commun. ACM, vol. 47, no. 9, pp. 53–58, Sep. 2004.

Flow-Based Programming

- Easy to understand (visual)
- Often used for data-processing pipelines

Rule-Based Programming

- Better at expression *correlation* between events
- Based on *declarative* if-then rules

<pre>rainfallAtStationOtherThan(T, S_ID) := rainfall(T, MM, S_ID), rainfall(T, MM_OTHER, S_ID_OTHER), (S_ID ≠ S_ID_OTHER), (MM_OTHER ≠ 0).</pre>
<pre>suspiciousRainfall(T, MM, S_ID) := rainfall(T, MM, S_ID), (MM > 2), not rainfallAtStationOtherThan(T, S_ID).</pre>
unsuspiciousRainfall(T, MM, S_ID) := rainfall(T, MM, S_ID), (MM > 2), not suspiciousRainfall(T, MM, S_ID).
unsuspiciousRainfall(T, MM, S_ID) := rainfall(T, MM, S_ID), (MM ≤ 2).

Flow-Based Programming

Poor Abstraction of Sub-tasks

Complexity of a "box" varies High-level and low-level logic within the same visual language

• Poor Visualisation of Correlation

Either "correlation" is built-in into a component, or a special operator. But with which semantics?

Rule-Based Programming

- **Complexity of State Management** Running out-of-memory by the continuous aggregation of facts in the fact base
- **Poor Fit for Imperative Actions** Not declarative, break the rule-based model
- **Poor Mobility of Rules** Most systems employ a single (shared) fact base

Flow-Based Programming

۰.

Rule-Based Programming

+

Visual Programming Language

A Low-Code Platform for Domain Experts

SWAMP

Smart WAter Management Platform

SWAMP Platform combines the power of Flow-Based Programming and Rule-Based Programming

with a user-friendly *visual language* for **domain experts**.

SWAMP

Smart WAter Management Platform

Approach for SWAMP

- Rule-based Specification of Sub-tasks Rules components allow for describing "low-level" reasoning
- Opt-in Statefulness

Specialised rule components that do not persist data

- **Restricted Imperative Actions** Imperative actions (I/O) with source and sink components
- Modular Fact Bases for Rules Each rule component is standalone

Platform hosts flows

Facts in flows are typed

timestamp Datetime v value Number v stationId Text v

OverflowEven

OverflowEventRepor

</>
 Console

Save Dataset

As a dataset "cso_report.csv"

Datasets

FLOWS DATASETS	SYSTEM INSPE	CTOR		
CSV (,) 👻	Browse	No file selected.		UPLOAD
Scope 1	Name	Last Update	Status	
Produced by flow "sensor	rainfall-renewes	???	complete	:
Produced by flow "STEP_	Phycocyanin	???	complete	:
Produced by flow "STEP_	STEP_S06	???	complete	:
Produced by flow "TestUC	TestedValicodeDataPI	???	complete	:
Produced by flow "use-ca	cumulative.csv	???	complete	:
Produced by flow "use-ca	cso.csv	???	complete	:
	- Upload reated b	led, or		
CI		,		

Flows, Relations, Datasets

Children and and the

Reusable Flow-Based Abstractions: Subflows

Rocks: Visual Rule-Based Programming

- 10 -	Search (3 character minimum)	c	Updated date ~ 1F
0	P platform 🗄	* 0	2 weeks ago
0	F Flowview A	tory. 🖈 0	2 weeks ago
0	F Flowserver Back-end for SWAMP prototype.	* 0	2 weeks ago
0	P Paper Combining Flow Based with Rule Based 🖄	* 0	2 we
0	F FlowDefinitions	* 0	зw
0	M modelserver 🗇	* 0	5 mc
0	A Aquatic Twins 🗇	* 0	1
0	R		_

- Prototypical implementation built in **TypeScript**
 - Deno (back-end)
 - Next.js (front-end)
 - \rightarrow ReactFlow for Flow Canvas
 - ightarrow Blockly for Rocks Editor

- SaaS Cloud Platform hosted on *our* (Software Languages Lab) infrastructure
- Plans to expand / transition

• Hydria experimented with designing surface water monitoring flows on the platform (flows for flows).

- +20 real flows defined
 Data Intake & Real-Time Monitoring, used as part of Hydria's decision-making process
 - UC1: Pre-Validation
 - UC2: Detecting Spikes & Threshold Violations
- Currently in a **"service contract"** for bug-fixing purposes

Flow-based and rule-based paradigms are complementary

When combined with a **visual language...** = SWAMP

Combining Flows and Rules in a Low-Code Platform for Smart Water Management

Jens Nicolay^{*}, <u>Bjarno Oeyen</u>^{*™}, Samuel Ngugi Ndung'u^{*}, Thierry Renaux^{*}, Maxime Démarest^{**}, Boud Verbeiren^{**}, Wolfgang De Meuter^{*}

1. Linking Flow Definition and Use

2. Flow Versioning

Problem

Flows change over time. Subflows might break.

Solution

Warn "subflows" where they are being used to ensure compatibility.

Solution

Explain "why" subflows are (no longer) compatible. And if needed, allow to use a "pinned" version.

3. Hot-swapping of Stateful Components

Problem

Flow changes require re-starting. Resets state, replaying events (costly).

Solution

Integrate old state in the new flow deployment. But how?