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As technology scales down ...
Pattern fidelity worsens due to 
increased light diffraction.

Lithography

transfers circuit patterns onto 
silicon wafers using light and 
photomasks.
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Fast Hotspot Detection and Our Approach
Hotspot detection methodologies before manufacturing

 Lithography Simulation

 Existing approaches for faster hotspot detection
 Machine learning-based (ML-based) methods have been proposed.
 Various features for ML-based methods have been introduced to 

capture the characteristics of hotspots.

Designed Patterns Lithography Simulation

Large computation time

Our approach:
Features incorporating the optical system characteristics
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Existing Features for Hotspot Detection

Vertical and horizontal 
division

Wire density for each 
local region

Number 
of 

divisions
𝑁𝑁 = 5

DBLF (Density Based Layout Feature)[1]:
captures local wiring density

HOLP (Histogram of Oriented Light Propagation)[2]:
captures approximate intensity gradient using Gaussian filtering
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[1] Yu2015
[2] Tomioka2017
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Our Approach: Motivation & Key Idea

 Hotspots depend on the optical conditions of the exposure system.
 Considering the optical characteristics of the exposure system may 

improve detection accuracy.

We propose a feature vector incorporating 
the optical system characteristics

To achieve this:

 Use SOCS kernel from optical/lithography 
simulators

 SOCS kernel represents the optical 
characteristics of the exposure system as 
a set of 2D matrices. Example of SOCS kernel 

in space domain
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Optical System Overview

Light intensity on wafer (SOCS model):

𝐼𝐼(𝑥𝑥,𝑦𝑦) = �
𝑗𝑗=1

𝑛𝑛

𝜎𝜎𝑗𝑗 (𝝓𝝓𝑗𝑗 ⋆ 𝐌𝐌)(𝑥𝑥,𝑦𝑦) 2

𝐈𝐈 : simulated intensity image, 
𝝓𝝓𝑗𝑗 : 𝑗𝑗-th SOCS kernel component (matrix), 
𝐌𝐌 : layout image
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Representation of the optical system

𝝓𝝓1,𝝓𝝓2, ⋯ ,𝝓𝝓25

Example: 25-order (𝑛𝑛 = 25) kernel

Convolution
Intensity = sum of squared             

kernel-layout convolutions
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[3] Cobb1995



Number 
of 

divisions
𝑁𝑁 = 10

Calculate the wire density 𝑑𝑑𝑙𝑙
for each subarea 

Divide the layout image 𝐌𝐌
into 𝑁𝑁 × 𝑁𝑁 subareas

Proposed Feature: Step 1
Divide the layout image into subareas and calculate the density of 
wiring for each subarea (local region in the paper) (same as DBLF)

Create a matrix 𝐌𝐌′ whose elements are 𝑑𝑑𝑙𝑙 values

𝑠𝑠1𝑠𝑠2 ⋯
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Number 
of 

divisions
𝑁𝑁 − 1
= 9

Calculate the average pixel 
value 𝑒𝑒𝑙𝑙 for each subarea

Divide the kernel component 𝝓𝝓𝑗𝑗
into subareas

𝑒𝑒1 𝑒𝑒2

Create a matrix 𝝓𝝓′𝑗𝑗 whose elements are 𝑒𝑒𝑙𝑙 values

Divide the kernel into (𝑁𝑁 − 1) × (𝑁𝑁 − 1) subareas (if 𝑁𝑁 is even) 
and compute the average of the pixel values for each subarea

𝑠𝑠1 𝑠𝑠2 ⋯
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Proposed Feature: Step 2
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⋯

Note: We assume that the layout image and the kernel have the same size. Peripheral kernel parts 
are clipped when N is even. 



Compute the convolution between the reduced layout matrix 𝐌𝐌′

and the reduced kernel component 𝝓𝝓′𝑗𝑗

𝐅𝐅OSAM = 𝐶𝐶1,1,𝐶𝐶1,2,⋯ ,𝐶𝐶𝑁𝑁,𝑁𝑁−1,𝐶𝐶𝑁𝑁,𝑁𝑁

Extract the central 𝑁𝑁 × 𝑁𝑁 submatrix 𝐂𝐂 from 𝐈𝐈𝐈
Our feature vector is

Simplified light intensity:

𝐼𝐼′(𝑥𝑥,𝑦𝑦) = �
𝑗𝑗=1

𝑛𝑛′

𝜎𝜎𝑗𝑗 (𝝓𝝓′
𝑗𝑗 ⋆ 𝐌𝐌

′)(𝑥𝑥,𝑦𝑦)
2
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Proposed Feature: Step 3

⋆
𝐈𝐈𝐈

(𝑁𝑁 − 1) × (𝑁𝑁 − 1)

𝐌𝐌′

𝑁𝑁 × 𝑁𝑁 𝑁𝑁 × 𝑁𝑁

𝝓𝝓′𝟏𝟏

OSAM: Optical System-Aware Mapping CENICS 2025

𝑛𝑛′ ≪ 𝑛𝑛

if 𝑛𝑛′ = 1



Feature Evaluation Experiment

Detector

Test data

Learning 
model

Trained

30
Training data

70%

Feature

Training

Feature

Test

Classification 
Results Label

Evaluation
Number of weak 

learners
Decision tree 

depth
Learning 

rate

2, 4, 6, 8, 10, 20, 40, 
60, 80, 100, 200, 400, 
600, 800, 1000

1, 2, 3, 4
0.95, 0.96, 
0.97, 0.98, 
0.99

 Goal:
 Evaluate hotspot detection accuracy

 Dataset:
 ICCAD2012 [4] (data1-5)
 re-labeled using ICCAD2013 optical 

simulator [5]

 Kernel: from ICCAD2013 simulator
 ML model: Real AdaBoost
 decision trees as weak learners

 Hyperparameters: 
 all combinations tested
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[4] Torres2012
[5] Banerjee2013



Actual 
HS

Actual 
N-HS

Predicted 
as HS

TP FP

Predicted 
as N-HS

FN TN

Experiment: Evaluation Metrics

 Precision (Pre): ratio of correct hotspot predictions
 Recall (Rec): ratio of detected hotspots
 F1 score (F1): Harmonic mean of Precision and Recall

 Higher is better

Pre=
TP

TP+FP

Rec=
TP

TP+FN

F1=2×
Pre×Rec
Pre+Rec
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Comparison of Features: DBLF vs OSAM
Compared Features:

DBLF,  OSAM (proposed)

Parameters of DBLF
• Number of divisions : 10
• Feature vector dimension: 100

Parameters of OSAM (proposed)
• Number of layout image divisions : 10
• Number of kernel divisions : 9
• Kernel order: 1
• Feature vector dimension 200

• includes DBLF as part of OSAM

The kernel 
exhibits 

high light 
intensity at 
the center.

Kernel matrix 𝝓𝝓1 [5]
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strong

weak

Color-coded by intensity

Kernel intensity shown with 
color for better visibility
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Experimental Results: F1 score Comparison

Dataset Number 
of test 
data

Highest value of all 
parameter combinations

Average of all parameter 
combinations

DBLF OSAM DBLF OSAM

data1 164 86.40 87.69 81.65 82.71

data2 1393 61.99 60.90 54.06 53.70

data3 1605 83.99 84.56 79.79 81.71

data4 1069 82.81 82.40 67.73 74.75

data5 646 79.93 82.60 67.18 75.15

average 79.02 79.63 70.08 73.60

Comparison between DBLF and OSAM (proposed)
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Evaluation metric: F1 score (scaled × 102, higher is better)

The proposed feature demonstrates slightly better performance.
Overall F1 scores suggest room for improvement.
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Analysis of Factors behind Low F1 scores

 Experimental Approach to Investigate Contributing Factors
 Replacing AdaBoost with CNN for Comparative Evaluation
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 Potential Contributing Factors 
 Factor 1: Problem instances may be inherently challenging.
 Factor 2: Limited discriminative power of features
 Factor 3: AdaBoost may be suboptimal for this task.

Factor 1 / 2 ? Lower F1 score than AdaBoost

 Higher F1 score than AdaBoost Factor 3 ?

Note: The factors listed are not mutually exclusive and may interact in complex ways.
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CNN Architecture Used for Comparison

CNN used in this experiment:

Input layer (10x10)

Convolution layer 
(8x8x16)

ReLU

Pooling layer (max)

Convolution layer 
(4x4x32)

ReLU

Pooling layer (max)

Fully-connected layer

Output layer

Filter size:
3x3

Number of filters:
1st conv. layer: 16
2nd conv. layer: 32

Pooling layer:
max pooling
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Dataset DBLF OSAM

data1 87.74 86.62

data2 65.52 67.14

data3 85.31 86.97

data4 84.71 84.05

data5 78.80 81.26

average 80.42 81.20

Comparison of DBLF and OSAM (proposed)

Dataset DBLF OSAM

data1 86.40 87.69

data2 61.99 60.90

data3 83.99 84.56

data4 82.81 82.40

data5 79.93 82.60

average 79.02 79.63

CNN-Based Evaluation AdaBoost-Based Evaluation

The proposed feature performed 
slightly better in both models.

Hotspot detection remains 
challenging for both features.
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Analysis of F1 score Trends Across Models

Evaluation metric: F1 score (scaled × 102, higher is better)
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Exploring Improvements to the Proposed Feature

10x10

2048x2048

Reduction

 We conducted experiments to examine whether 
detection accuracy could be improved by incorporating 
more optical system information:
 As a trial, optical simulation images were used directly to 

maximize optical system information.
 Models were trained using these optical simulation images.
 The images were resized to match the dimensions of the 

proposed feature.

Used as input 
for ML models
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AdaBoost CNN
Dataset OSAM(10x10) Sim(10x10) OSAM(10x10) Sim(10x10)

data1 87.69 88.39 86.62 87.74

data2 60.90 71.64 67.14 65.83

data3 84.56 87.35 86.97 86.59

data4 82.40 86.11 84.05 85.13

data5 82.60 84.41 81.26 84.86

average 79.63 83.58 81.20 82.03

The proposed feature shows 
potential for further improvement.
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We investigated whether incorporating additional 
optical system information could enhance performance.

Experimental Results: Assessing Improvement by 
Incorporating More Optical System Characteristics

Evaluation metric: F1 score (scaled × 102, higher is better)

Sim: Simulation image

Better than the 
proposed feature
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Exploring Improvement Potential by Increasing Feature 
Dimensions

100x100

4000x4000

2048x2048

Reduction

 We conducted experiments to assess whether 
increasing the image size could improve performance. 
 Resize simulation images to a larger dimensions than before

20

Used as input 
for ML models
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Simulated image size after reduction

Dataset 10x10 15x15 20x20 30x30 50x50 100x100

data1 88.39 88.85 88.49 88.48 87.72 87.71

data2 71.64 72.84 71.76 70.03 67.97 67.68

data3 87.35 88.23 87.26 86.88 86.65 86.17

data4 86.11 89.87 88.64 88.23 88.11 87.14

data5 84.41 86.13 83.29 83.72 82.67 82.25

average 83.58 85.18 83.89 83.47 82.63 82.19

We examined whether increasing feature dimension 
could improve performance.

Performance tended to decrease as feature 
dimension increased beyond a certain point.
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Experimental Results: Impact of Increased 
Feature Dimension on Performance (AdaBoost)

F1 scores improved 
compared to 10x10

Evaluation metric: F1 score (scaled × 102, higher is better)
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Simulated image size after reduction
Dataset 10x10 20x20 150x150

data1 87.74 87.01 93.88
data2 65.83 74.77 85.92
data3 86.59 89.72 90.21
data4 85.13 93.56 93.44
data5 84.86 90.65 92.50

average 82.03 87.14 91.19
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CNN outperformed AdaBoost.
Proposed feature shows potential for further improvement.

Improved with 
increased

feature 
dimensions

We examined whether increasing feature dimension 
could improve performance.

Experimental Results: Impact of Increased 
Feature Dimension on Performance (CNN)

Evaluation metric: F1 score (scaled × 102, higher is better)
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Conclusions:
 Proposed feature OSAM for hotspot detection 

incorporates optical system.
 OSAM achieved slightly better accuracy than DBLF.

Future Work:
 Optimize kernel order
 Explore higher feature dimensions

Conclusions and Future Work
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