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Background

Lithography

As technology scales down ...
transfers circuit patterns onto

s L Pattern fidelity worsens due to
silicon wafers using light and y

increased light diffraction.

photomasks.
Designed Manufactured
Photomask pattern pattern
(Mask pattern)  gxposure light Short
\. : = circuit
B | . | - Transferred
Open
Lens N
Y = circuit
Resist _ . .
High-risk regions are called ...
Oxide
Wafer film

Lithography hotspots

CENICS 2025



Fast Hotspot Detection and Our Approach

Hotspot detection methodologies before manufacturing

e Lithography Simulation Large computation time
—

I\Designed Patterﬂ_* Lithography Simulation —»{ Hotspot Detection

e Existing approaches for faster hotspot detection
e Machine learning-based (ML-based) methods have been proposed.

e Various features for ML-based methods have been introduced to
capture the characteristics of hotspots.

Our approach:
Features incorporating the optical system characteristics

CENICS 2025 4




Existing Features for Hotspot Detection

DBLF (Density Based Layout Feature)[1]:
captures local wiring density

Number B

of —

divisions p—

N=5 |_
Vertical and horizontal ~ Wire density for each

division local region

HOLP (Histogram of Oriented Light Propagation)[2]:
captures approximate intensity gradient using Gaussian filtering

[1] Yu2015

— [2] Tomioka2017
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Our Approach: Motivation & Key Idea

e Hotspots depend on the optical conditions of the exposure system.

e Considering the optical characteristics of the exposure system may
improve detection accuracy.

We propose a feature vector incorporating
the optical system characteristics

To achieve this:

e Use SOCS kernel from optical/lithography
simulators

e SOCS kernel represents the optical
characteristics of the exposure system as
a set of 2D matrices.

Example of SOCS kernel
in space domain
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Optical System Overview
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Light intensity on wafer (SOCS model):  Example: 25-order (n = 25) kernel

2 o 00
[(x,y)zzo'j|(¢j*M)(x’y)| \ ¢11 ¢21 I¢25}
j=1 Y
I : simulated intensity image, Convolution Representation of the optical system
¢ : j-th SOCS kernel component (matrix), Intensity = sum of squared
M : layout image kernel-layout convolutions

[3] Cobb1995
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Proposed Feature: Step 1

Divide the layout image into subareas and calculate the density of
wiring for each subarea (local region in the paper) (same as DBLF)

Number | _
of |—
divisions[—
N=10[
Divide the layout image M Calculate the wire density d;
into N X N subareas for each subarea

Create a matrix M’ whose elements are d; values

CENICS 2025 38




Proposed Feature: Step 2

Divide the kernelinto (N — 1) X (N — 1) subareas (if N is even)
and compute the average of the pixel values for each subarea

Note: We assume that the layout image and the kernel have the same size. Peripheral kernel parts
are clipped when N is even.

Number
of
divisions
N—-—1 |—
—9 —

Divide the kernel component ¢ ; Calculate the average pixel
into subareas value ¢e; for each subarea

Create a matrix ¢'; whose elements are ¢; values
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Proposed Feature: Step 3

Compute the convolution between the reduced layout matrix M’

and the reduced kernel component ¢’ ;
(N—-1)x (N —1) N x N XN

ifn' =1
Simpllfled Ilght |nten5|ty.
nr
2
Ieey) = ) a|@; M@ )|
= J n'«Kn

Extract the central N X N submatrix C from I

Our feature vector is FOSAM — (61,1» C1,2: oo CN,N—l' C'N,N)

OSAM: Optical System-Aware Mapping  CENICS 2025



Feature Evaluation Experiment

e Goal: 70% : 30
e Evaluate hotspot detection accuracy | Test data

Training data

e Dataset:
e ICCAD2012 [4] (datal-5)

e re-labeled using ICCAD2013 optical
simulator [5]

L]
I o*

. 1 Training Test :/
e Kernel: from ICCAD2013 simulator — :
..0 ..0 l
e ML model: Real AdaBoost Feature l
H ]
e decision trees as weak learners ——— Trained v |
mode|g —p Detector i

e Hyperparameters: ~ ————" 0"

e all combinations tested R == . N
[Classn‘lcatlon ]]] Label ll |

|
Number of weak Decision tree Learning ‘\ Results J
learners depth rate Evaluation

2,4,6, 8, 10, 20, 40, 0.95, 0.96,
60, 80, 100, 200,400, 1,2,3,4 0.97,0.98, [4] Torres2012
600, 800, 1000 0.99

[5] Banerjee2013
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Experiment: Evaluation Metrics

e Precision (Pre): ratio of correct hotspot predictions
e Recall (Rec): ratio of detected hotspots

e F1 score (F1): Harmonic mean of Precision and Recall
e Higher is better

TP

Pre=
P d ted R P
redicte eC=
as HS TP+FN

Predicted FN TN PrexRec
: F1=2 X
o
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Comparison of Features: DBLF vs OSAM

Compared Features:

The kernel
DBLF, OSAM (proposed) iy
high light
Parameters of DBLF intensity at
* Number of divisions : 10 the center.
* Feature vector dimension: 100 Kernel matrix ¢, [5]
Color-coded by intensity
Parameters of OSAM (proposed)
strong

* Number of layout image divisions : 10 o
* Number of kernel divisions : 9
e Kernel order: 1

e Feature vector dimension 200
* includes DBLF as part of OSAM

Kernel intensity shown with  weak
color for better visibility
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Experimental Results: F1 score Comparison

Comparison between DBLF and OSAM (proposed)

Evaluation metric: F1 score (scaled X 107, higher is better)

Highest va Average of all parameter
parameter co combinations

lue of all
mbinations

164 86.40 87.69 81.65 82.71

1393 61.99 60.90 54.06 53.70

1605 83.99 84.56 79.79 81.71

datad 1069 82.81 82.40 67.73 74.75
646 79.93 82.60 67.18 75.15

average 79.02 79.63 70.08 73.60

The proposed feature demonstrates slightly better performance.
Overall F1 scores suggest room for improvement.
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Analysis of Factors behind Low F1 scores

e Potential Contributing Factors
e Factor 1: Problem instances may be inherently challenging.
e Factor 2: Limited discriminative power of features
e Factor 3: AdaBoost may be suboptimal for this task.

e Experimental Approach to Investigate Contributing Factors
e Replacing AdaBoost with CNN for Comparative Evaluation

e Lower F1 score than AdaBoost > Factor1/27?

e Higher F1 score than AdaBoost > Factor3?

Note: The factors listed are not mutually exclusive and may interact in complex ways.
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CNN Architecture Used for Comparison

CNN used in this experiment:

Input layer (10x10)

Filter size:
Convolution layer RelU 3x3
(8x8x16) )
| Number of filters:
ReLU Pooling layer (max) 1st conv. layer: 16
v 2nd conv. layer: 32
Pooling layer (max) Fully-connected layer Pooling |ayer:

y max pooling
Output layer

Convolution layer
(4x4x32)
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Analysis of F1 score Trends Across Models

Comparison of DBLF and OSAM (proposed)

Evaluation metric: F1 score (scaled X 107, higher is better)

CNN-Based Evaluation AdaBoost-Based Evaluation
87.74  86.62 "Eer]  86.40  87.69
PR 6552 67.14 61.99  60.90
PR 8531 8697 83.99  84.56
84.71  84.05 el 8281 82.40
PR 7880 8126 79.93  82.60
80.42  81.20 e 79.02 79.63

Hotspot detection remains

challenging for both features.

The proposed feature performed
slightly better in both models.
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Exploring Improvements to the Proposed Feature

e We conducted experiments to examine whether
detection accuracy could be improved by incorporating
more optical system information:

e As a trial, optical simulation images were used directly to
maximize optical system information.

e Models were trained using these optical simulation images.

e The images were resized to match the dimensions of the
proposed feature.

. Used as input
Reduction
for ML models

10x10

2048x2048
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Experimental Results: Assessing Improvement by
Incorporating More Optical System Characteristics

We investigated whether incorporating additional

optical system information could enhance performance.
Evaluation metric: F1 score (scaled X 102, higher is better)

OSAM(10x10) | Sim(10x10)
87.69 88.39 86.62 87.74
| data2| 60.90 71.64 67.14 65.83
| data3 84.56 87.35 86.97 86.59
82.40 86.11 84.05 85.13
| data5 82.60 84.41 81.26 84.86
79.63 83.58 81.20 82.03
Better than the The proposed feature shows
{ proposed feature potential for further improvement.

Sim: Simulation image CENICS 2025



Exploring Improvement Potential by Increasing Feature
Dimensions

e We conducted experiments to assess whether
increasing the image size could improve performance.

e Resize simulation images to a larger dimensions than before

Used as input
for ML models

100x100
2048x2048
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Experimental Results: Impact of Increased
Feature Dimension on Performance (AdaBoost)

We examined whether increasing feature dimension

could improve performance.
Evaluation metric: F1 score (scaled X 107, higher is better)

Simulated image size after reduction

| Smated magesze sterreduction
" atast| 10x10 | 15115 | 20120 | 3030 | 50350 | 100xi00

Ccierl 88.39 88.85 88.49 88.48 87.72 87.71
7164 7284 71.76 70.03 67.97 67.68
8735 88.23 87.26 86.88 86.65 86.17
cEieel 86.11 89.87 88.64 88.23 88.11 87.14
8441 86.13 83.29 83.72 82.67 82.25

-\Udeldr 83.58 8518 83.89 83.47 82.63 82.19
oy’

dimension increased beyond a certain point.

F1 scores improved Performance tended to decrease as feature
compared to 10x10
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Experimental Results: Impact of Increased
Feature Dimension on Performance (CNN)

We examined whether increasing feature dimension
could improve performance.
Evaluation metric: F1 score (scaled X 107, higher is better)

_ Simulated image size after reduction
w1000 | 70a0 | 1souts0_

87.74 87.01 93.88

| data2 65.83 74.77 85.92 (NEEEEEUSEE
| data3) 86.59 89.72 90.21 increased
85.13 93.56 93.44 dirfs;‘;irjns )
| data5 84.86 90.65 92.50%

82.03 87.14 91.19

CNN outperformed AdaBoost.
Proposed feature shows potential for further improvement.
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Conclusions and Future Work

Conclusions:

e Proposed feature OSAM for hotspot detection
incorporates optical system.

e OSAM achieved slightly better accuracy than DBLF.

Future Work:

e Optimize kernel order
e Explore higher feature dimensions
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