Using Radar Chart Areas to Evaluate the Sensitivity of Electronic Nose Sensors in Detecting Water Stress in Soybean Paulo S. de P. Herrmann¹, Matheus Santos Lucas²

¹Embrapa Instrumentation – São Carlos (SP), BRAZIL. E-mail: paulo.herrmann@embrapa.br ²Institute of Mathematics and Computer Sciences, University of São Paulo

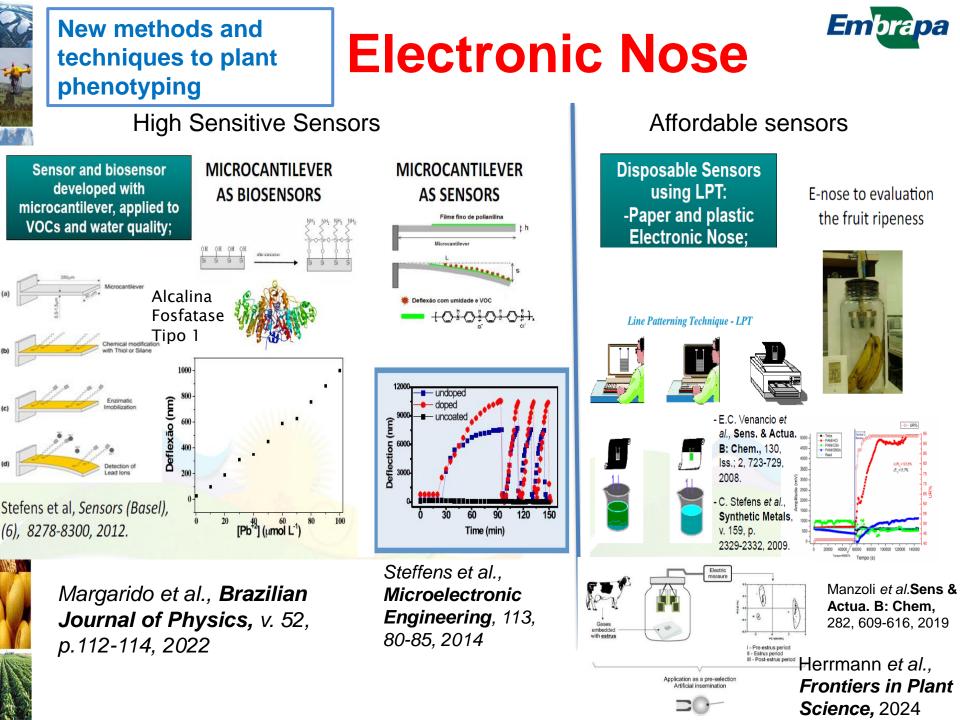
ALLSENSORS 2025 - Sensors and Actuators for Agriculture and Knowledge

in Engineering (STSA) May 18, 2025 to May 22, 2025 Nice, France

IARIA

Summary

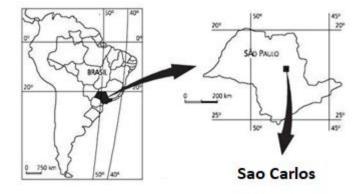
- SHORT RESUME;
- TOPICS INTEREST;
- EMBRAPA INSTRUMENTATION;
- SCIENTIFIC MOTIVATION;
- BASIC PRINCIPLE OF ELECTRONIC NOSE;
- MATERIALS AND METHODS;
- RESULTS AND DISCUSSION;
- CONCLUSION AND FUTURE WORKS



Short Resume

Undergraduate (1982 – 1986)	Electronic Engineer – FEB (BR)	Agronomic electronic scale.
Master Science (1989 – 1993)	Electrical Engineer - EESC/USP (BR)	MW applied to measure Soil Moisture.
Doctorate (1994 – 1998)	Physical Chemistry – IQSC/USP (BR)	Application of AFM in agriculture.
Pos-Doctorate (2002 – 2003)	Chemistry – UPENN (USA)	Affordable Sensors using Conductive Polymers.
Visting Scientist (2012 – 2015)	Plant Science – FZJ – (DE)	New methods and techniques applied to Plant Phenotyping.

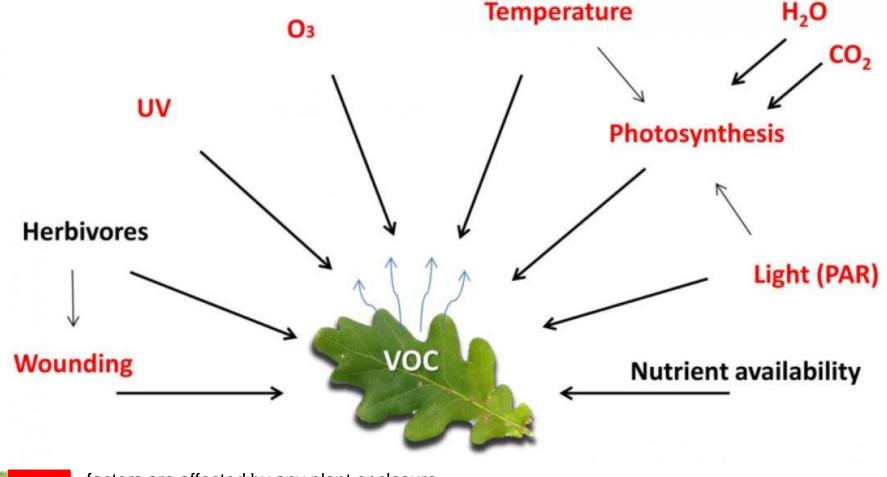
Senior Researcher Embrapa Instrumentation São Carlos –SP (BR)



Embrapa Instrumentation

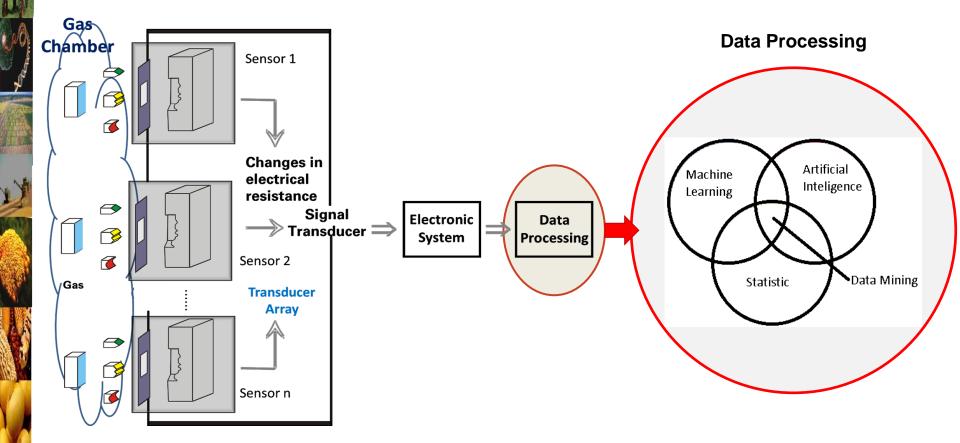
Sao Carlos (SP) – BRAZIL

One of 43 Embrapa units spread out in Brazil.



Scientific Motivation

- Land vegetation contributes 90% of the global VOC emissions¹;
- Plants have been shown to emit volatile organic compounds (VOCs) when they are affected by stress^{2,3};
- The promising outlook of VOC phenotyping as a fast and noninvasive measure of phenotypic dynamics⁴;
- Potential applications of E-Nose as affordable plant gas detection⁵;.
- Establishing a method of data visualization and analysis using an area radar chart.
- 1- Kindler-Scharr et al. Nature, 416, 17, 381-384, 2009;
- 2 Jansen et al. Annual Review of Phytopalogy, 49, 157-174, 2011.
- 3 Fisher et al., **Science**, 360, 739, 2018;
- 4 Niederbacher et al., Journal of Experimental Botany, 66, 18, 5403–5416, 2015;
- 5 Herrmann et al., Frontiers in Plant Science, 2024

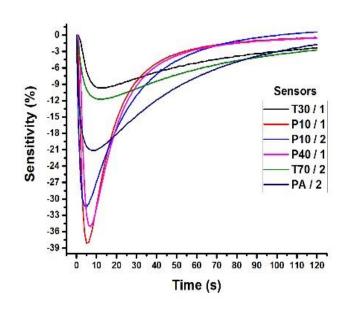

Impact of abiotic and biotic factors on plant VOC emission

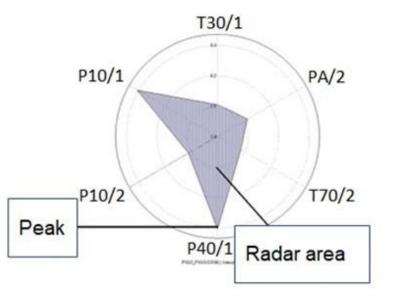
factors are affected by any plant enclosure.

Bruhn et al., 2015

Basic Principle of the E-Nose and Machine Learning

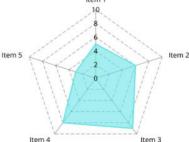
Herrmann et al., Frontiers in Plant Science, 2024


MATERIALS AND METHODS


TABLE I. THE SENSORS INSTALLED IN THE E-NOSE ARE [6]:

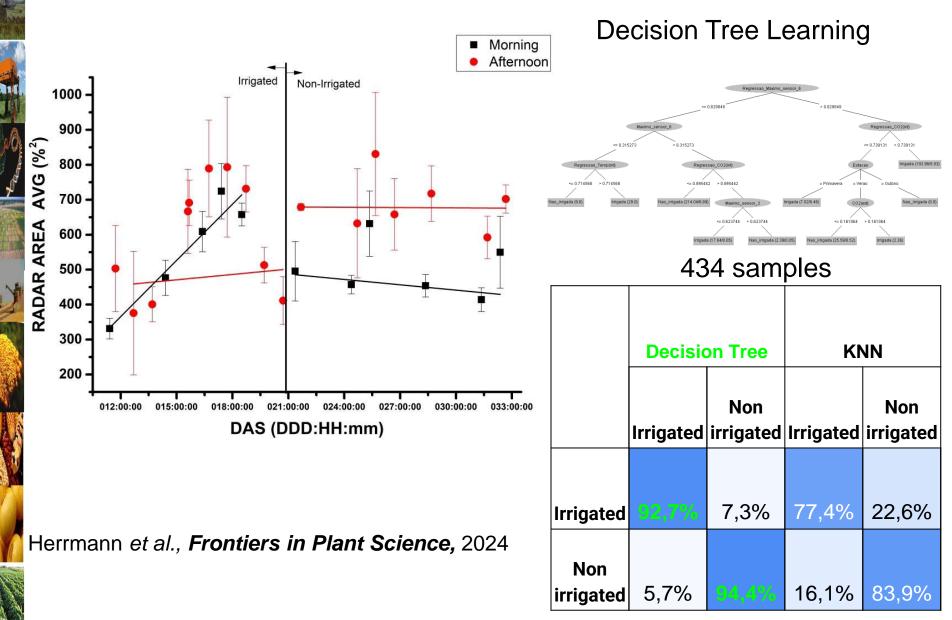
No.	Sensor	Sensitivity property	Reference Materials
S1	T30/1	Organic	Organic
		compounds	compounds
S2	P10/1	Combustible gas	hydrocarbon
S3	P10/2	Inflammable gas	methane
S4	P40/1	Oxidizing gas	fluorine
S5	T70/2	Aromatic	Methyl
		compounds	benzene, xylene
S6	PA/2	Organic	Ammonia,
		compounds and	amines, ethyl
		toxic gas	alcohol

$$S(\%) = \left(\frac{R - R_0}{R_0}\right) x 100 \qquad (\%) \tag{1}$$


 R_0 – Initial electrical resistance (Ω); R – Electrical resistance varying over time (Ω)

Calculating the Area of a Radar

The method of radar chart for Multidimensional Data:


- $X = \{X_1, X_2X_j, \dots X_n\} \text{ is a multi-dimensional data set, and } X_i \{x_{i1}, x_{i2}, x_{i3}x_{iN}\} \text{ is a N-dimensional vector. Use the radar chart when N \ge 3 (Liu et al., 2008).}$
- A method for evaluating the accessibility of a facility location using the area of a radar chart was provided by Takenaka and collaborators (Takenaka et al., 2018). The authors argue that the area of a radar chart is a more stable measure of accessibility than other measures.
- The Area of the Radar (A_n) was calculated with the Shoelace equation (2) where $X_i = S_i \{S1(\%), S2(\%), S3(\%), S4(\%), S5(\%), S6(\%)\}$.

•
$$A_n \equiv \frac{1}{2} \sin \frac{2\pi}{n} \sum_{i=1}^n (x_i y_{i+1} - x_{i+1} y_i)$$
 (%²) (2)

 $x_{n+1} = x_1$ and $y_{n+1} = y_1$ to complete the loop.

Outcomes

Benefit

- Faster Analysis in Some Applications;
- Identification of Complex Mixtures;
- Potential for More Selective Sensors;
- Enhanced Discrimination Capability;
- Information about Exposure Duration;

Drawback

- Sensor Dependence and Variability;
- Calibration Challenges;
- Area calculation being influenced by the shape and the scaling of the axes.

CONCLUSIONS

Area radar charts

- Valuable tools when analyzing and comparing the overall performance of distinct data groups;
- Presenting complex data in a clear and intuitive manner;
- Facilitate better decision-making and insights;
- Allowing stakeholders to quickly grasp relationships and trends within the data.

Future Work

- Integrate method with equipment in a mobile unit to facilitate field use;
- Incorporate a models with AI;
- Apply the methodology to study thermal and water stress.

Climate Change." Center for Integration of Enabling Technologies to Empirical Increase the Resilience of Agriculture to the Effects of

Acknowledgments

- Embrapa Instrumentation and LNNA facility;

- Embrapa SEG project # 20.22.01.001.00 and # 10.20.05.006.00.00 Embra

MINISTÉRIO DA Agricultura e Pecuária

