The Tenth International Conference on Advances in Sensors, Actuators, Metering and Sensing

ALLSENSORS 2025

STSA: Sensors, Actuators, and Metering for Agriculture and Knowledge in Engineering

Evaluation of an IoT System Used with Sensors for the Recognition of Invasive Plants in Groundnut Crops

Bruno M. Moreno

bruno.moreno@estudante.ufscar.br

Paulo E. Cruvinel paulo.cruvinel@embrapa.br

Augusto G. F. Costa

augusto.costa@embrapa.br

2025

Introduction

INTRODUCTION

Internet of Things (IoT) systems

- Capture and processing of data collected by sensors
- Communication between devices
- Aggregation, processing, and interpretation of data from different sensors
- Many sensors can be used for agricultural applications

INTRODUCTION

Precision agriculture and weed management - Groundnut

- Unwanted outcomes of invasive plant interference
- Use of optical and position sensors to aid Computer
 Vision
- Studies in the Literature worked with pre-existing image databases, without real field tests and consideration of IoT specifications and limitations

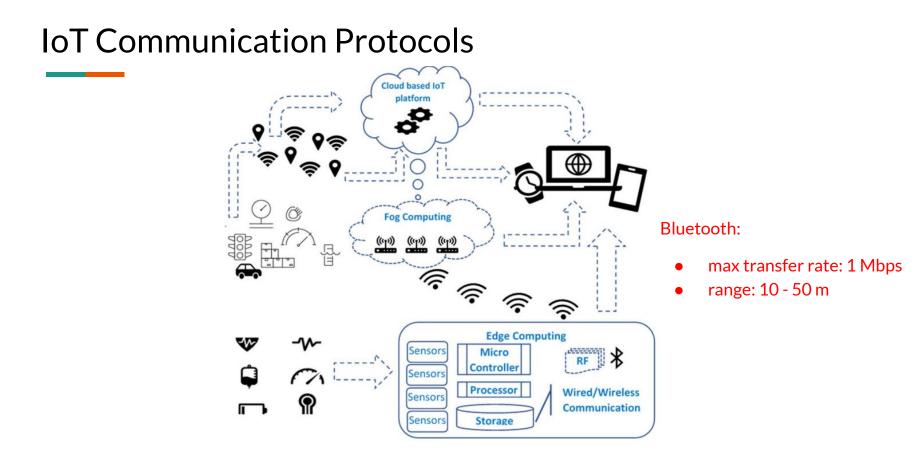
INTRODUCTION

Objective

- Evaluation of an IoT system able to:
 - Acquire stereo images in a real-field operation from wireless commands
 - Recognize more than one invasive plant species in groundnut crops
- Consideration of limitations regarding handling data obtained by IoT sensors

Material and Methods

IoT Sensor Data Insights


- Security:
 - private, authentic and uncorrupted data
- Scalability:
 - growth of devices and data handling
- Bandwidth availability:
 - ensure transmission

IoT Sensor Data Insights

- Battery life:
 - energy efficiency
- Data volume:

data filtering and storage capacity

- Exposure Risk:
 - protection from environment

Camera Sensor Specifications

CAMERA HARDWARE SPECIFICATIONS

Size	25 x 24 x 9 mm		
Still resolution	5 MP		
Video modes	1080p30, 720p60, 640x480p60/90		
Sensor	OmniVision OV5647		
Sensor resolution	2592 x 1944 pixels		
Sensor image area $(W_s \ge H_s)$	3.76 x 2.74 mm		
Pixel size	$1.4 \ \mu m \ge 1.4 \ \mu m$		
Optical size	1/4"		
Full-frame SLR lens equivalent	35 mm		
S/N ratio	36 dB		
Dynamic range	67 dB @ (times of gain equal to 8)		
Fixed focus	1 m - ∞		
Focal length	$3.60 \pm 0.01 \text{ mm}$		
Horizontal field of view (HFOV)	$53,50^{\circ} \pm 0,13^{\circ}$		
Vertical field of view (VFOV)	$41.41^{\circ} \pm 0.11^{\circ}$		
Focal ratio (F-stop)	2.9		

Recognition of Invasive Plant

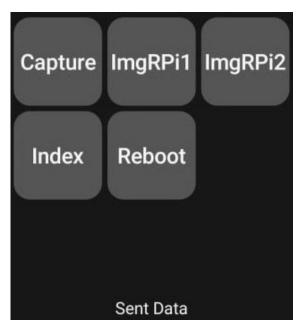
- Experimental Setup
 - \circ total area of 72 m²
 - weeds: velvet bean (Mucuna aterrima) and signal grass (Urochloa decumbens)
- Feature Extraction: Local Binary Patterns (LBP) on the edge and Haralick moments of the texture
- Pattern Recognition: Support Vector Machine (SVM)

[Evaluation of an IoT System Used with Sensors for the Recognition of Invasive Plants in Groundnut Crops • Bruno M. Moreno • Paulo E. Cruvinel • Augusto G. F. Costa]

Results and Discussions

IoT System Evaluation

- Security: connected only to trusted equipment using MAC address and specific ports
- Battery life: $12 \vee 60 \text{ Ah battery} \rightarrow 15 \text{ h operation}$
- Data volume: 32 GB micro SD card for each sensor
 → total of 6,000 images (1280 x 960)
- Exposure Risk: structure and protective case to house the sensors


IoT System Evaluation

function IMAGE CAPTURE ON THE MASTER RPI(comd. resol. dir) begin function while True do if comd == 'captr' then send(comd, Slave) ▷ sync trigger $img \leftarrow capture_image(resol)$ save image(*imq*, *dir*) $imq2 \leftarrow$ receive data(Slave) wait_operation() save image(*imq2*, *dir*) else if *comd* == 'send1' then send(imq, cell phone) wait operation() else if comd == 'send2' then send(img2, cell_phone) wait_operation() else if comd == 'slres' then send(lower_resolution(img), cell_phone) wait operation() else if comd == 'shutd' then send(comd, Slave) wait operation() shutdown system() end if end while end function

function IMAGE CAPTURE ON THE SLAVE RPI(resol. dir) begin function while True do comd = receive data(Master)if comd == 'captr' then $img2 \leftarrow capture_image(resol)$ save_image(img2, dir) ▷ optional send(*img*2, Master) ▷ via OBEXFTP protocol wait_operation() else if comd == 'shutd' then shutdown system() end if end while end function

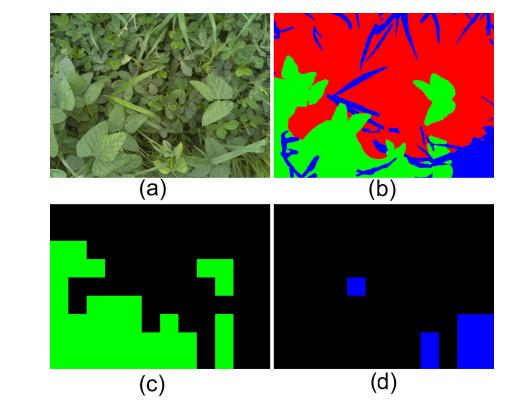
[Evaluation of an IoT System Used with Sensors for the Recognition of Invasive Plants in Groundnut Crops • Bruno M. Moreno • Paulo E. Cruvinel • Augusto G. F. Costa] 14

IoT System Evaluation

Android app interface

Experimental Field

Classifier Results



- RBF kernel
- C = 1000
- γ = 0.01

Classifier	Precision	Sensitivity	F-score	Samples	Accuracy
SVM velvet bean			2- 2	1383	81.1%
${\cal H}_1$ sample has weed	0.80	0.41	0.54	349	80.2%
${\cal H}_0$ don't have weed	0.83	0.97	0.89	1034	82.8%
SVM signal grass				1383	79.2%
\mathcal{H}_1 sample has weed	0.72	0.14	0.23	313	71.7%
${\cal H}_0$ don't have weed	0.80	0.98	0.88	1070	79.6%

[Evaluation of an IoT System Used with Sensors for the Recognition of Invasive Plants in Groundnut Crops • Bruno M. Moreno • Paulo E. Cruvinel • Augusto G. F. Costa]

Classifier Results

Occupation area:

- velvet bean: 14.5 %
- signal grass: 4.12 %

Conclusion

CONCLUSION

- Aid of IoT sensors in the task of recognizing and distinguishing the presence of different invasive plants in groundnut crops
- Specific protocol and requirements in handling IoT sensor data and communication
- Invasive plants classifiers accuracy close to 80%
- Future work: FPGA integration to better processing

ACKNOWLEDGEMENT

The Tenth International Conference on Advances in Sensors, Actuators, Metering and Sensing

ALLSENSORS 2025

STSA: Sensors, Actuators, and Metering for Agriculture and Knowledge in Engineering

Evaluation of an IoT System Used with Sensors for the Recognition of Invasive Plants in Groundnut Crops

Bruno M. Moreno

bruno.moreno@estudante.ufscar.br

Paulo E. Cruvinel paulo.cruvinel@embrapa.br

Augusto G. F. Costa

augusto.costa@embrapa.br

2025

