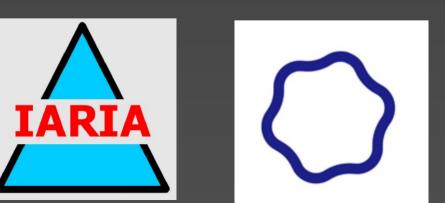
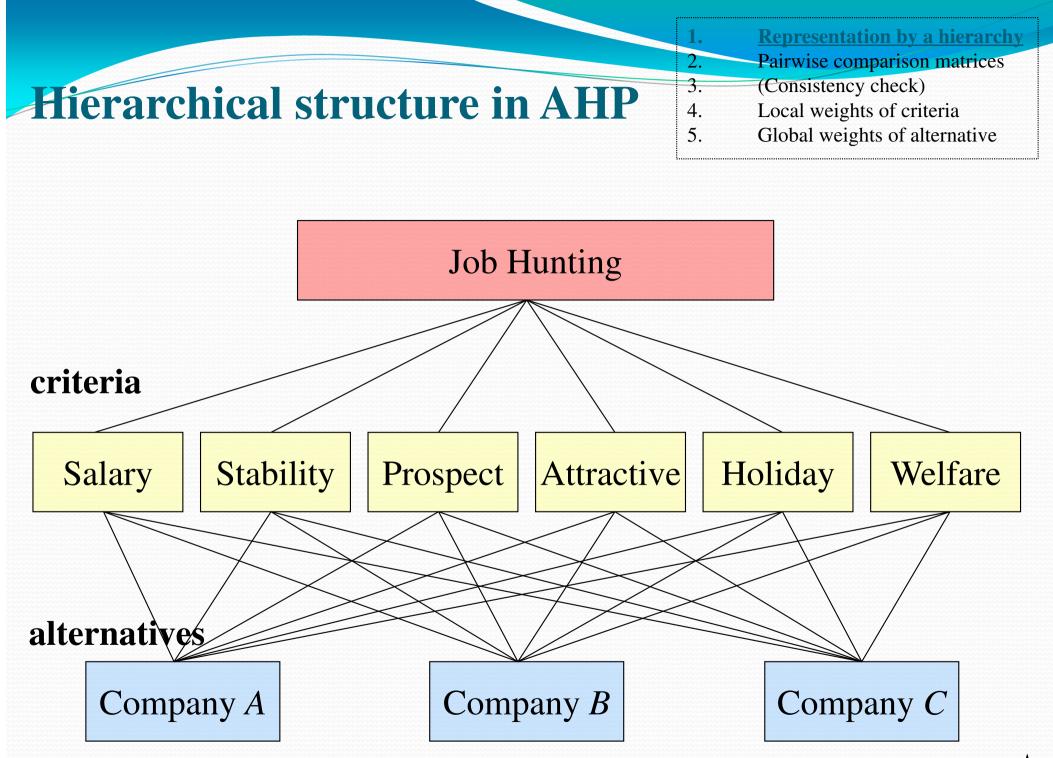
Numerical Experiments of Sensitivity Analysis for Fuzzy Reciprocal Matrix in AHP



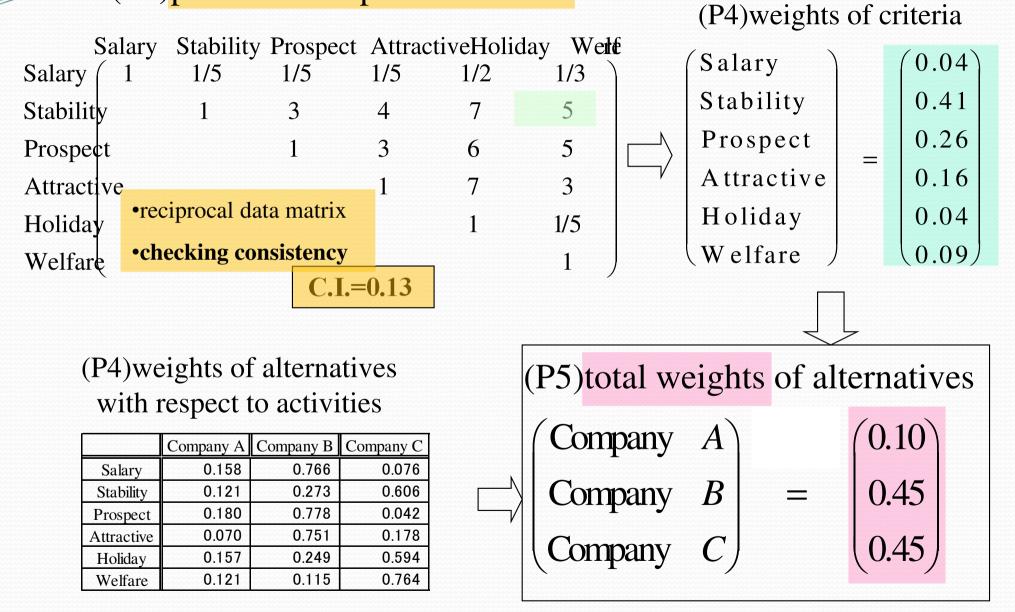
Shin-ichi Ohnishi, Takahiro Yamanoi Hokkai-Gakuen University, Japan Hokkaido University, Japan ohnishi@hgu.jp

Introduction

- Analytic Hierarchy Process (AHP, Saaty 1977) has been a popular method in decision making
- It is difficult to keep reliability of data because of worsening of consistency index of crisp, non fuzzy, matrix (data in AHP)
- Fuzzy data AHP can prevent losing reliability, because it can reflect vagueness of decision maker's answers
- We propose and consider about a sensitivity analysis to investigate most influential components of fuzzy reciprocal data matrix through numerical experiments



Example (P2)pairwise comparison matrix



weights are normalized eigenvector corresponding to maximum eigenvalue **Consistency index of the pairwise comparison matrix** *A* (checking reliability of data, C.I.)

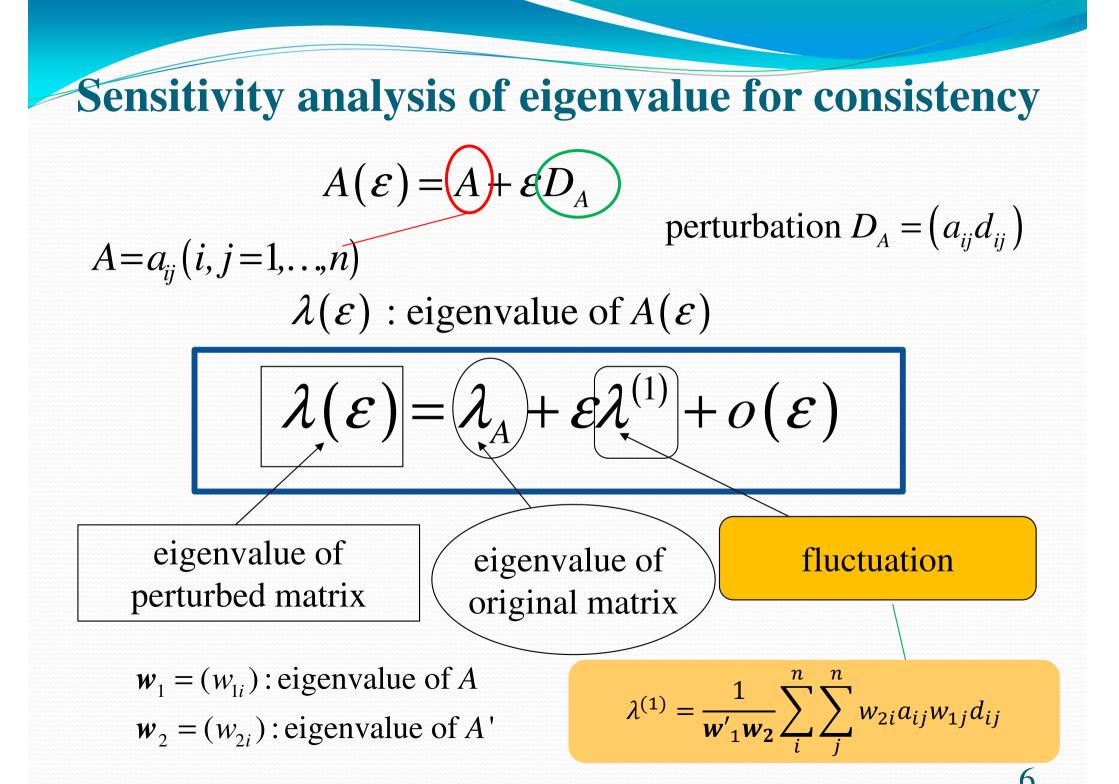
$$C.I.=\frac{\lambda_A-n}{n-1}$$

where

A: comparison matrix with order n

 λ_A : maximum eigenvalue (Frobnius root) of A

<u>C.I. > 0.1, ⇒bad consistency</u> \rightarrow re-evaluate again **using sensitivity analysis**



Components of fuzzy data matrix (Ohnishi, Dubois, Prade 2006)

fuzzy data $\widetilde{r}_{ij} = (l_{ij}, r_{ij}, u_{ij})_{\Delta}$ $\mu_{ij}(r_{ij}) = 1$ $\mu_{ij}(l_{ij}) = \mu_{ij}(u_{ij}) = 0$

reciprocity

$$\begin{bmatrix} \mu_{ij}(r) = \mu_{ji}(1/r) \end{bmatrix} \longrightarrow \operatorname{core}(\widetilde{r}_{ji}) = 1/r_{ij} \\
\operatorname{supp}(\widetilde{r}_{ji}) = [1/u_{ij}, 1/l_{ij}]$$

Optimal degree of satisfaction and weight of fuzzy data AHP

$$\alpha^* \equiv \max_{w_1,\ldots,w_n} \min_{i,j} \left\{ \mu_{ij} \left(\frac{w_i}{w_j} \right) \right\}$$

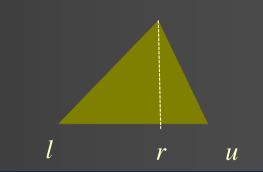
If all \widetilde{r}_{ij} (i < j) are triangular fuzzy numbers $(l_{ij}, r_{ij}, u_{ij})_{\Delta}$, [NLP] Maximize α $w_j \{ l_{ij} + \alpha (r_{ij} - l_{ij}) \} \le w_i \le w_j \{ u_{ij} + \alpha (r_{ij} - u_{ij}) \}$ $\sum_{i}^{n} w_i = 1$ (i, j = 1, ..., n)

 \bigstar \bigstar

example					_	
слатріс	1	(1, 3, 5) _△	(2, 5, 7) _△	(6, 8, 9) _{\(\triangle\)}		
fuzzy		1	(1, 2, 4) _△	(2, 4, 5) _△	6	8 9
reciprocal			1	(0.5, 2, 3) _△	l	r u
data matrix				1		
	1	[<mark>2.42</mark> ,3.58]	[4.13,5.58]	[7.42, <mark>8.29</mark>]	[Lij, U	Jii
α-cut interval	1	1	[1.71,2.58]	[<mark>3.42</mark> ,4.29]	[], C	、 ジ コ
matrix			1	[<mark>1.57</mark> ,2.29]		
				1	<i>α</i> *=0.	711
	1	<mark>2.42</mark>	5.28	<mark>8.29</mark>	<i>w</i> ₁	0.581
crisp matrix		1	2.18	<mark>3.42</mark>	w ₂	0.240
crisp matrix			1	1.57	<i>w</i> ₃	0.110
			T	1.57	w ₄	0.070
				L		

Choice of crisp value for sensitivity analysis of consistency on fuzzy data

fuzzy data $\widetilde{r}_{ij} = (l_{ij}, r_{ij}, u_{ij})_{\Delta}$



(1) core *r* of each component of matrix
(2) support set (interval [*l*,*u*]) of each component
(3) α-cut-set (interval [*L*,*U*]) of each component
✓ selection lower or upper value of intervals
➢ only lower's, or upper's
➢ all combination of the endpoints
✓ an endpoint of α-cut-set for calculating crisp weight must be meaningful

Numerical experiment: Sensitivity analysis of consistency on fuzzy data matrix

fuzzy	1	(<mark>1</mark> , 3, 5) _∆	(2, 5, 7) _△	(6, 8, <mark>9</mark>) _스 <	
reciprocal		1	(1, 2 , 4) _△	(<mark>2</mark> , 4, 5) _∆	6
data matrix			1	(<mark>0.5</mark> , 2, 3) _∆	l
				1	

crisp matrix for analysis $\begin{pmatrix}
1 & 1 & 5.28 & 9 \\
1 & 2.18 & 2 \\
1 & 0.5 \\
C.I._{N} = \frac{\lambda_{l} - n}{n - 1} & 1
\end{pmatrix}$ endpoint of side of α -cut-set for calculating weights

result of sensitivity analysis

8

9

U

		-0.037
	-0.030	-0.020
-0.050	0.035	0.057

the biggest absolute value has most influence.

Summary

Sensitivity analysis of consistency for fuzzy data AHP

- Proposal and consideration about consistency on fuzzy pairwise comparison matrix (reliability of data) by use of sensitivity analysis.
- ♦ As a choice of crisp value for sensitivity analysis
- ✓ Selection of an endpoint of α -cut-set for calculating crisp weight must be more meaningful than using other value.

In the future

- Other indices for consistency
- More experiments using real data