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“I'HATE ASKING PEOPLE FOR HELP. 1 ONLY DO IT WHEN | NEED
IT. [ONLY AFTER TRYING SEVERAL TIMES TO REACH A

DESTINATION] | GET SO FRUSTRATED THAT | WILL ASK SOMEBODY
FOR HELP... | FEEL S0 EMBARRASSED WHEN THIS HAPPENS.

e 1/4 adults in United States have disabilities and 12.1% have
mobility issues

e 96% Participants of the survey with mobility limitations conduct
research before visiting locations to obtain information, both about
the planned route and the accessibility of the location.[11]

e Research shows 63% participants of a survey suffer with vague
and outdated information despite conducting prior research.[11]

THERE'S A STEP TO THE ENTRANCE. IF THERE IS ONE STEP,
THAT
MEANS IT'S NOT ACCESSIBLE.”




EXxisting Research
Lancdscape

Accessibility Gaps: Many studies emphasize challenges faced by people with disabilities in indoor environments, including
poor signage, inconsistent digital-physical mapping, and high cognitive load
during navigation.

Focus on Visual Impairments: Most prior work focuses on blind or visually impaired users, overlooking the distinct needs of
mobility- impaired individuals.



Related Work

Mobile & Assistive Technologies

e Smartphone-based systems using Wi-Fi localization and pre-mapped accessibility data help guide users

indoors ([2]).
Limitation: Works well in static environments but lacks real-time perception and dynamic path adaptation.

o Simulation frameworks ([3]) assist in design-time evaluation of indoor accessibility.
Limitation: Do not provide in-the-moment navigation for users.
e Static map-based solutions ([4][5]) fail o handle dynamic environmental changes such as temporary

obstacles, construction, or crowding.



Related Work

Computer Vision & Deep Learning Approaches

e Deep learning and machine vision applied for hazard detection and pedestrian tracking ([6][7]).
Strength: Promising for real-time perception.
Limitation: Focus mainly on outdoor environments or visually impaired users, not mobility-related challenges indoors.



Related Work

Drone-Based Assistance — An Emerging Field

e Drones show potential in infrastructure inspection, emergency response, and now assistive navigation.

o Global drone market projected to grow from $15.9B (2023) to $53.4B (2030) making real-tfime navigation tech
(object detection, obstacle avoidance) more accessible.
Existing drone research:

e Drones assist visually impaired users via auditory cues and airflow, following pre-recorded paths|8].

o Wearable fall detectors + drones deliver emergency aid autonomously [9].

e Integration of VR with drones enables immersive experiences for users with limited mobility[10].

FOR A DETAILED REVIEW AND RELATED WORK, PLEASE SEE THE FULL PAPER.



Research Gap
ldentified

e Current systems lack real-time, adaptive indoor navigation tailored for mobility-impaired individuals.
e There is an opportunity to explore Al-powered drones as dynamic assistive agents capable of perceiving,
reasoning, and guiding users in changing indoor environments.



=0olution

e Drone based navigation guide to help people with limited mobility
reach their destination
e Enhances independence and inclusivity

Destinatio



Live Video Streaming from Drone . . — .
e DJI Robomaster TT Drone establish a Wi-Fi connection

with the Ground Control System (GCS)
e Live streams will be fransmitted to the GCS
Transmission to GCS e The GCS will send commands fo drone

Data Processing and
Decision Making at

GCS

Send commands to

System
Architecture




Live Video Stream > Frame Capture > Preprocessing

\ 2
Dataset Training the Export YOI];OtVSthJGCt
Preparation Model Trained Model I clection
Pretrained Model
Model Development & Training
\ 2
Detection Output:

Bounding Boxes,
Labels, Confidence

WORKFLOW OF THE YOLO OBJECT DETECTION PIPELINE USED INTHE PROPOSED DRONE-BASED NAVIGATION SYSTEM. THE GCS RECEIVES LIVE VIDEO STREAMS FROM THE DRONE
AND PROCESSES EACH FRAME USING THE PRE-TRAINED YOLO MODEL [1].



DYNAMIC BATH
NAVIGATION ALGORITHM

e Constructs an accessibility-compliant graph representing the environment.

e Computes the shortest path from source to destination using Dijkstra’s algorithm.

e Continuously monitors for obstacles during navigation.

e |f an obstacle is detected, removes the blocked edge and recomputes the path dynamically.
e Guides the drone safely until it reaches the destination.



THEOREM 1

The worst-case runtime of our Dynamic Path Navigation algorithm is O(E - (|V| + |E|) log |[V]) in
the worst case.

THEOREM @

If there exists at least one unblocked path from the source node s to the destination d at any
time during execution, then the Dynamic Path Navigation Algorithm will reach d in finite time.

These theorems summarize the computational efficiency and completeness guarantees of
the proposed algorithm. Formal proofs are omitted for brevity but can be found in the
extended version of this work.



ACCESSIBILITY-0ORIENTED OBJECT
DETECTION USING DRONES

Data Collection and Annotation
e Collected 4500+ images containing ramps,stairs,potholes,people and
accessibility symbol
o Used roboflow for annotation
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ACCESSIBILITY-0ORIENTED OBJECT
DETECTION USING DRONES

Model Evaluation Metrics

e The model performs best in predicting accessibility
symbols (93% accuracy) and stairs (90% accuracy)




ACCESSIBILITY-ORIENTED OBJECT
DETECTION USING DRONES

train/box_loss train/cls loss train/dfl loss metrics/precision(B) metrics/recall(B)
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« MAP@50 Reaching to 0.8: This high mean average precision at 50% loU (Intersection over
Union) is a strong indicator of the model's overall accuracy in object detection.



Conclusian

Experimental evaluations conducted in a controlled setting demonstrate the
system'’s feasibility and potential to address critical gaps left by traditional,
static navigation tools. The findings showcase the critical role that aerial
robotics can play in improving independent mobility, reducing navigational
barriers, and advancing inclusion within built environments.




Future Work

e Enhance the object detection model’'s accuracy and adaptability across diverse indoor environments.
Improve dataset relevance and reduce biases.

e Conduct real-world testing in varied indoor settings to evaluate performance and safety.

Explore integration with smart building systems and |oT sensors for scalable, inclusive deployment.
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