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Introduction

Immersive VR aids stroke rehabilitation by stimulating brain recovery
through engaging, game-based training. It's cost-effective and
usable in both hospitals and at home.

Problem:
* Lack of Real-time Monitoring in Neurorehabilitation
* Pre-vs. Post-intervention Comparisons
No Continuous Insights During Therapy

ive:
Integrate iVR and fNIRS
Real-time Brain Activity Monitoring During iVR Tasks

Significance:
* Portable, Non-invasive Monitoring
* Enhances Cognitive and Motor Functions
* Real-time Brain Engagement Analysis for Neurorehabilitation

https://www.artinis.com/blogpost-all/2022/combining-virtual-reality-and-portable-fnirs
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Background

IVR in Neurorehabilitation: Challenges in Current

Rehabilitation Methods:

* Interactive, multi-sensory * No real-time brain activity
environment (visual, auditory, monitoring

e Pre- vs. post-therapy
omparisons limit continuo

functions insights

e Promotes neuroplasticity in
neurological rehabilitation
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fNIRS:

* Non-invasive optical brain
imaging

eMeasures cortical hemodynamic

e Portable, motion-resistant, cost-
effective vs. fMR




Objectives of the Study

Develop & Test:
e iVR-fNIRS platform for real-time brain
monitoring during iVR tasks

Brain Monitoring Focus:
e Target: Motor Cortices, DLPFC (motor &
executive control)

Tasks:

e Real-world rehabilitation tasks (e.g., hand-

grasping)
e Engage motor and cognitive functions

Image generated by OpenAl's GPT-4 model, accessed through ChatGPT.
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Principle:

* Uses near-infrared light to measure brain activity
* Light penetrates the skull and interacts with brain

tissue Skull
Light Trajectory:
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Hemoglobin Dynamics:

HbO (oxygenated hemoglobin) absorbs less light at \ |
certain wavelengths ‘

HbR (deoxygenated hemoglobin) absorbs more light ¢ \ |

Changes in HbO and HbR concentration indicate brain
activity (hemodynamic response)

Data Interpretation:
* Light absorption differences = brain activation

Naseer, Noman & Hong, Keum-Shik. (2015). fNIRS-based brain-computer interfaces: a review. Frontiers in Human Neuroscience.
9.10.3389/fnhum.2015.00003.




Methodology

Integrated Platform:

» Hardware:

« HTC Vive Pro VR headset (immersive
VR tasks)

* Rogue Research Inc. multichannel
fNIRS system (real-time brain activity
measurement)

* Purpose:

* Seamless integration of brain activity
data with immersive VR tasks

* Task Design:

* Hand-grasping movements mimicking
rehabilitation™ exercises to evaluate
motor and executive control functions L ‘

Kassab, Ali et al. “Multichannel wearable fNIRS-EEG
system for long-term clinical monitoring.”
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Methodology

Experimental Setup:

e Task Environments:

* Real-World: Tasks with clipboard
indicators (green/red)

Non-Immersive VR: Tasks on a
computer screen with a virtual avatar

Fully Immersive VR: Tasks in a VR
baseball game (HTC Vive Pro

d
e

C
o

Real-world environment

fNIRS light
emitters and
detectors

* Procedure:

* Each task performed 8 times per
session

* Brain activity monitored in M1
(Motor Cortices) and DLPFC (Pre-
Frontal Cortex)

Virtual
baseball
S

/’

IARIA 2025

Screen-based environment
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Methodology - VR Game Development

Purpose:

+ Simulate real-world rehabilitation tasks in
an immersive virtual environment

Game Design:
* Developed using the Unity engine

* Focused on hand-grasping tasks, mimicking
baseball-catchingactions

Task Details:

* Participants perform hand-grasping
movements in response to virtual baseball Multi Player Menu

throws

* Two modes; C— ]

* Single-player: Interactive mode
» Multi-player: Observational mode e

Goal:

» Engage motor and cognitive regions for
neurorehabilitation tasks
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Results - Signal Quality

Signal-to-Noise Ratio:

* No interference between
fNIRS and VR

* High signal-to-noise ratio
(~32 £ 13 dB)
* Reliable fNIRS data during

A -

Brain Activation:

 Hemodynamic  responses
(HbO increase, HbR
decrease)

* Key regions: M1, DLPFC

* Observed during hand-
grasping tasks across all
environments
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Left DLPFC

HbO (Real)
= == HbO (Screen)

Time (s)
HbR (Real)
= == HbR (Screen)
m— HbR (VR)
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Results - Comparison
Across Environments

Increased Neural
Activation:

* Higher HbO increase,
lower HbR decrease

 Stronger brain

engagement during iVR
tasks

Functional Connectivity:
* Enhanced M1-DLPFC
connectivity

» Better coordination
between motor and
cognitive processes




Results — Functional
Connectivity

Enhanced Connectivity:

* Increased functional connectivity between M1 and
DLPFCduring iVR tasks

* Suggests better coordination between motor and
cognitive processes

iVR vs. Other Environments:

* Stronger network connections in iVR compared to real-
world and screen-based tasks

Connectivity Analysis:

* More co-functioning brain areas observed during iVR
tasks

* Significant connectivity between M1 and DLPFC during
immersive tasks

Implications:

* Indicates improved engagement of motor and cognitive
control functions in iVR
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Connectivity analysis showed more connected brain areas during iVR task
than the other environments, p < 0.0, false discovery rate-corrected.
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Discussion - Implications

IVR as a Neurorehabilitation Tool:
* Immersive, engaging rehabilitation
* Improves brain activity and connectivity

Absence of Haptic Feedback:
* Enhanced brain activation without tactile feedback
* Opens possibilities for home-based therapy

— Potential for Wider Use:
* More effective rehabilitative effect

* Requires further investigation in clinical
neurorehabilitation
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Take-Home Message

P

Higher brain activation, improved
Key Findings; connectivity in iVR tasks

Potential for neurorehabilitation

Expand study to larger sample

Next Steps: Add haptic feedback to iVR
Integrate Al for personalized rehab programs

Long-Term e Al optimizing rehab programs based on real-
Impact: time brain data
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