Employing Optical Brain Imaging for Real-Time Assessment of Brain Functions During Immersive Virtual Reality: Harnessing Potential for Neurorehabilitation

Authors: Asma Seraj Pour Shooshtari¹ (Presenter), Mirella Veras, Ali Kassab, Daniel Alejandro Galindo Lazo, Frédéric Lesage, Dang Khoa Nguyen, Zahra Moussavi, and Ke Peng

¹ Department of Computer and Electrical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada

Email: serajpoa@myumanitoba.ca

DESEADCH CENTR

Presenter: Asma Seraj Pour Shooshtari

She obtained her bachelor in Computer Engineering from University of Guilan, Iran. Currently she is a second-year master's student at the Electrical and Computer Engineering department of University of Manitoba, Winnipeg, Canada.

HerresearchinterestsincludeNeurorehabilitation,Real-timeBrainImaging,ApplicationsofVRinRehabilitation,andAl-drivenTherapy.

Price Faculty of Engineering, University of Manitoba, Canada

Introduction

Immersive VR aids stroke rehabilitation by stimulating brain recovery through engaging, game-based training. It's cost-effective and usable in both hospitals and at home.

Problem:

- Lack of Real-time Monitoring in Neurorehabilitation
- Pre- vs. Post-intervention Comparisons
- No Continuous Insights During Therapy

Objective:

- Integrate iVR and fNIRS
- Real-time Brain Activity Monitoring During iVR Tasks

Significance:

- Portable, Non-invasive Monitoring
- Enhances Cognitive and Motor Functions
- Real-time Brain Engagement Analysis for Neurorehabilitation

https://www.artinis.com/blogpost-all/2022/combining-virtual-reality-and-portable-fnirs

Background

iVR in Neurorehabilitation:

- Interactive, multi-sensory environment (visual, auditory, haptic)
- Enhances cognitive and motor functions
- Promotes neuroplasticity in neurological rehabilitation

Challenges in Current Rehabilitation Methods:

- No real-time brain activity monitoring
- Pre- vs. post-therapy comparisons limit continuous insights

fNIRS:

- Non-invasive optical brain imaging
- Measures cortical hemodynamic activity
- Portable, motion-resistant, costeffective vs. fMR

Objectives of the Study

Develop & Test:

• iVR-fNIRS platform for real-time brain monitoring during iVR tasks

Brain Monitoring Focus:

• Target: Motor Cortices, DLPFC (motor & executive control)

Tasks:

- Real-world rehabilitation tasks (e.g., handgrasping)
- Engage motor and cognitive functions

Image generated by OpenAI's GPT-4 model, accessed through ChatGPT.

fNIRS Mechanism

Principle:

- Uses near-infrared light to measure brain activity
- Light penetrates the skull and interacts with brain tissue

Light Trajectory:

- Light is emitted by the source (LEDs or lasers)
- Travels through brain tissue
- Detectors measure the intensity of transmitted light after it passes through the tissue

Absorption:

- Hemoglobin absorbs light
- HbO and HbR absorb light differently

Hemoglobin Dynamics:

- **HbO** (oxygenated hemoglobin) absorbs less light at certain wavelengths
- HbR (deoxygenated hemoglobin) absorbs more light
- Changes in HbO and HbR concentration indicate brain activity (hemodynamic response)

Data Interpretation:

• Light absorption differences = brain activation

Naseer, Noman & Hong, Keum-Shik. (2015). fNIRS-based brain-computer interfaces: a review. Frontiers in Human Neuroscience. 9. 10.3389/fnhum.2015.00003.

Methodology

Integrated Platform:

• Hardware:

- HTC Vive Pro VR headset (immersive VR tasks)
- Rogue Research Inc. multichannel fNIRS system (real-time brain activity measurement)

• Purpose:

• Seamless integration of brain activity data with immersive VR tasks

• Task Design:

• Hand-grasping movements mimicking rehabilitation exercises to evaluate motor and executive control functions

Kassab, Ali et al. "Multichannel wearable fNIRS-EEG system for long-term clinical monitoring."

Methodology

Experimental Setup:

- Task Environments:
 - **Real-World**: Tasks with clipboard indicators (green/red)
 - Non-Immersive VR: Tasks on a computer screen with a virtual avatar
 - Fully Immersive VR: Tasks in a VR baseball game (HTC Vive Pro headset)

• Procedure:

- Each task performed 8 times per session
- Brain activity monitored in M1 (Motor Cortices) and DLPFC (Pre-Frontal Cortex)

Immersive VR environment

VR headset

Virtual

Screen-based environment

IARIA 2025

Methodology - VR Game Development

Purpose:

• Simulate real-world rehabilitation tasks in an immersive virtual environment

Game Design:

- Developed using the Unity engine
- Focused on hand-grasping tasks, mimicking baseball-catching actions

Task Details:

- Participants perform hand-grasping movements in response to virtual baseball throws
- Two modes:
 - **Single-player**: Interactive mode
 - Multi-player: Observational mode

Goal:

 Engage motor and cognitive regions for neurorehabilitation tasks

Results - Signal Quality

Signal-to-Noise Ratio:

- No interference between fNIRS and VR
- High signal-to-noise ratio (~32 ± 13 dB)
- Reliable fNIRS data during immersive iVR tasks

Brain Activation:

- Hemodynamic responses (HbO increase, HbR decrease)
- Key regions: M1, DLPFC
- Observed during handgrasping tasks across all environments

Results - Comparison Across Environments

Increased Neural Activation:

- Higher HbO increase, lower HbR decrease
- Stronger brain engagement during iVR tasks

Functional Connectivity:

- Enhanced M1-DLPFC connectivity
- Better coordination between motor and cognitive processes

Results – Functional Connectivity

Enhanced Connectivity:

- Increased functional connectivity between M1 and DLPFC during iVR tasks
- Suggests better coordination between motor and cognitive processes

iVR vs. Other Environments:

• Stronger network connections in iVR compared to realworld and screen-based tasks

Connectivity Analysis:

- More co-functioning brain areas observed during iVR tasks
- Significant connectivity between M1 and DLPFC during immersive tasks

Implications:

• Indicates improved engagement of motor and cognitive control functions in iVR

Connectivity analysis showed more connected brain areas during iVR task than the other environments, p < 0.05, false discovery rate-corrected.

Discussion - Implications

iVR as a Neurorehabilitation Tool:

- Immersive, engaging rehabilitation
- Improves brain activity and connectivity

Absence of Haptic Feedback:

- Enhanced brain activation without tactile feedback
- Opens possibilities for home-based therapy

Potential for Wider Use:

- More effective rehabilitative effect
- Requires further investigation in clinical neurorehabilitation

Take-Home Message

Key Findings:	 Higher brain activation, improved connectivity in iVR tasks Potential for neurorehabilitation
Next Steps:	 Expand study to larger sample Add haptic feedback to iVR Integrate AI for personalized rehab programs
Long-Term Impact:	 Al optimizing rehab programs based on real- time brain data

Thank you for your time!

Asma Seraj pour shooshtari serajpoa@myumanitoba.ca University of Manitoba, Canada