Detailed Analysis of TCP BBR

Implementation in Ns-3 Network
Simulator under Heavy Traffic Loads

l. Infroduction

*“A lot of TCP congestion control algorithms.

—

* Loss-based approach: Detects a congestion by consecutive packet losses

NewReno, HighSpeed TCP, CUBIC TCP, Hamilton TCP

* Delay-based approach: Detects a congestion by an increase of RTT

Vegas

* Hybrid approach: Combines loss-based and delay based
TCP Veno, Compound TCP

* TCP BBR (Bottleneck Bandwidth and Round-trip propagation time)
* Congestion-based congestion control, proposed by Google in 2016
* Estimate bottleneck bandwidth (BtIBw) and minimum RTT (RTprop)

* Send data by rate-based control of BtlBw X RTprop

A"

. Introduction (2)

*~Studies on BBR performance

—

* In early stages: BBR in Linux and physical network

* BBR software in ns-3: Implemented by Vivek Jain et al in version 3.27, in 2018.
Officially included in ns-3 at version 3.34 released in 2021.

Some performance evaluation studies.
* May be different from BBR software in Linux

* Our experience:

* TCP BBR throughput test where sixteen BBR flows share a 1Gbps bottleneck link and

output buffer to bottleneck link is limited. ®

* Throughput of some BBR flows becomes extremely low.

* Experimental results were different between ns-3 version 3.40 and version 3.44.
= -2 J.

Fo N\

H. Backgrounds A. Overview of TCP BBR

*“TCP BBR estimates for the available bottleneck bandwidth, Bt|IBw, and the minimal

—

round-trip propagation time, RTprop, to calculate a path’s available BDP.

* A BBR sender data segments with the pacing rate given by pacing_gain X BltBw
X RTprop with the help of pacing.

* The parameter pacing_gain, which is set to 1 most of the time, is used to control

the actual pacing rate.

* BBR algorithm has four different phases: Startup, Drain, Probe Bandwidth
(ProbeBW), and Probe RTT (ProbeRTT).

* ProbeRTT is shifted in time window based (every 10 second).

U\/ - v

ll. Backgrounds B. Performance Evaluation Studies

reference | BBRcode | network | evaluationtarget | max number of flows
[10] Linux physical |BBR, BBR+ CUBIC |6 BBRs, 1 BBR+ 1
CUBIC
[11] Linux physical |BBR + CUBIC 10 BBRs + 10 CUBICs
[12] Linux Mininet |BBR, BBR+ CUBIC |6 BBRs, 10 BBRs + 10
CUBICs
[13] Linux physical |BBR, BBR+ CUBIC |8 BBRs, 3 BBRs + 3
CUBICs
[14] ns-3 (Vivek ns-3 BBR, BBR + BIC, 2 BBRs, 2 BBRs + 2
Jain’s BBR + BIC + BIC,1BBR+1BIC+1
version) NewReno + Vegas | NewReno + 1 Vegas
[15] Linux Mininet |BBR, (Delay- 2 BBRs
aware BBR)
[16] ns-3 (Vivek ns-3 BBR, (other BBR |4 BBRs
Jain’s variants including
version) BBRv2)
[17] ns-3 ns-3 BBR, BBR + CUBIC |8 BBRs, 2 BBRs + 2
~ \Jeusics|

v

lll. Performance Evaluation A. Experimental Setup

1Gbps,
50msec

output buffer:
100packets ~
5000packets

* Queue discipline: First-In First-Out queue discipline following the drop tail policy.
* TCP loss recovery algorithm: TCP classic recovery.

* DelAckCount (Number of packets to wait before sending a TCP Ack): 1. O
* Explicit congestion notification functionality: not used.

e SACK: used. 9

)\ — 4

|. Performance Evaluation B. Results with Version 3.40 i

- -/
~ *“Output buffer set to 100, 500, 1000, 2000, 5000 packets
-’

~N
o

= 100p = 500p = 1000p = 2000p M 5000p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8

! B 100p

B 500p

Throughput (Mbps)
w H [V
o o o

N
o

Throughput (Mbps)

i
o

=
o

o

-
/,/III. erformance Evaluation B. Results with Version 3.40

ThFoughpu’r (Mbps), and pacing rate for high throughput flow and low throughput flow

buffer size average std. dev. total 250
100 pkts. 39.5 31.0 632.0 200 flows - flow 12
500 pkts. 35.9 32.0 574.8 g .
1000 pkts. 36.1 28.5 577.9 @
2000 pkts. | 53.1 12.7 850.3 w 100
5000 pkts. 56.3 3.3 900.2 iy .

0

0 10 20 30 40 50

Time (sec)

\
_/I'(I. Performance Evaluation C. Results with Version 3.44

*“There are no low throughput flows

et

Throughput (Mbps)

B = N N W W
i © 1 © U1 © U

o

1 3 5 7 9 11 13 15

(@) Individual throughput

50
45
40
35
30
25
20
15
10

average: 39.9 Mbps
std. dev.: 4.7 Mbps
total: 638.9 Mbps

(b) Box-and-whisker plots

©

J

N 4

—/

- s/
‘yource Code Detailed Analysis A. Ns-3 Program Structure

N’
- UpdateBtIBw() function behavior
UpdateBtIBw() Updates maxBweFilter if a new delivery rate is larger than prior value.
Nt UpdateAckAggregation() UpdateAck Takes account of delayed ACK.
UpdateModel Aggregation()
AndState() CLeeNe oPhaeel) CheckCyclePhase() | If in ProbeBW phase and a RTT elapsed, advance cycle.
CheckFullPipe() If delivery rate becomes large enough, set m_isPipeFilled = true
CheckFullPipe() CheckDrain() If in Startup phase and m_isPipeFilled is true, enter Drain phase.
If in Drain phase and inflight data decreased, enter ProbeBW phase.
CheckDrain() UpdateRTprop() If RTT didn’t increase or Wy (10 sec) elapsed (m_rtPropExpired =
true), update m_rtProp.
CongControl() g .
el e CheckProbeRTT() | If not in ProbeRTT phase and m_rtPropExpierd, enter ProbeRTT
phase and save cwnd.
If in ProbeRTT phase and 200 msec elapsed, enter ProbeBW if
[CheckProbeRTT() m_isPipeFilled or Startup otherwise.
SetPacingRate() Set rate = Max value in maxBweFilter X pacing_gain.
If m_isPipeFilled or rate > m_pacingRate, set m_pacingRate = rate.
SetPacingRate() SetSendQuantum() | Set m_sendQuantum = MSS.
UpdateControl / ; —
R el SetCwnd() Determine cwnd considering targetCwnd and packet losses.
SetSendQuantum() If in ProbeRTT phase, set cwnd to 4 MSS.
ProcessAck() DupAck()
\‘I EnterRecovery()
ReceivedAck() TcpBbr::CongControl() \ﬁ
DoRetransmit()
=
SendPendingData() SendDataPacket()
Use m_pacingTimer, scheduled to expire at the time to \ /
send next packet according to m_pacingRate.

1
i
1
When the timer expires, SendPendingData() is called. I
hile m_pacingTimer is running, it does not call .

1

endDataPackét(). </

IV. Seurce Code Detailed Analysis B. Difference of Ns-3 3.40 and 3.44

Change history from 3.40 t03.44 related to TCP =t
~1) TCP Cubic now supports TCP-friendliness by default, making the congestion window

growth somewhat more aggressive. (from 3.40 to 3.41)

2) TepCubic and TeplinuxReno will no longer grow their cwnd when application-limited.

(from 3.41 to 3.42)

3) Deprecated Eventld:IsRunning(). It has been replaced with Eventld::IsPending(). (from

3.41 to 3.42)

4) TCP Proportional Rate Reduction (PRR) recovery has been aligned to the updates in

draft-ietf-tcpm-prr-rfc6937bis. (from 3.42 to 3.43)

5) A new trace source TcpSocketBase::LastRtt has been added for tracing the last RTT

=

sample observed. The existing trace source TcpSocketBase::Rtt is still providing the
smoothed RTT, although it had been incorrectly documented as providing the last RTT. /

(from 3.42 to 3.43)
—am e e)

IV. Sourcé Code Detailed Analysis B. Difference of Ns-3 3.40 and 3.44

BBR related difference in source code level

e

tcp-bbr.cc:
- m_rtProp in 3.40 is changed to m minRtt in 3.44. This
seems to be just a text-level modification.
After rate iIs calculated in SetPacingRate () as shown in
Table 111, the following modification is added.

[R I pacingMargin),

m pacingMarginissetto0.01
This needs to be considered.
One if sentence is modified in UpdateBltBw ().
340:if (rs.m deliveryRate == 0)
344:if (rs.m delivered < 0 ||

@ Ve N liccval . IsZero ())

This needs to be considered.
m rtProp (m minRtt)issettom lastRtt in 3.40, but
tom srtt in 3.44. This is related to item 5) in the change
history. This may need to be considered.

S

tcp-socket-base.cc
One else if sentence is modified in DupAck () :
340:else if (m txBuffer->IsLost(m high
RxAckMark + m ech=uniSceeuie s itk
344:else if (m txBuffer->IsLost(m high
RxAckMark)
This needs to be considered.
Related to item 5) in the change history, Estimate
Rtt () Is largely modified. This needs to be considered.

IV. Sourcé Code Detailed Analysis B. Difference of Ns-3 3.40 and 3.44

S

*“Use tcp-bbr.cc and tcp-socket-base.cc of version 3.44 in ns-3 version 3.44.

e

* Modify the followings.

tcp-socket-base.cc to be ported:
Change IsPending () for EventId variables back to

IsRunning (). This is related to item 3) in the change
history.

tcp-socket-state.h in version 3.40:
Define TraceValue<Time> m srtt and bool

m 1sCwndLimited.

IV. Source Code Detailed Analysis B. Difference of Ns-3 3.40 and 3.44

/
*“Result: A little improvement. More investigation required.
Nt
70 70
60 60
Z 20 50
s
E 40 40
'g- 30
=1 30
2 20 average: 35.6 Mbps
" 20 std. dev.: 31.8 Mbps
10 total: 569.9 Mbps
10
0 ------- Q
1 3 5 7 9 11 13 15 0

V. Conclusions

In-this paper, we presented some results of TCP BBR performance evaluation where sixteen BBR flows shar&™

_a 1 Gbps bottleneck link whose output router has a limited output buffer. We used 100, 500, 1,000, 2,000,
and 5000 packets as the output buffer size. For, small buffer size, 100/500/1,000 packets, some flows
provided high throughput, but the performance of the others were extremely low. Although the BBR intra-
protocol unfairness is mentioned in [10], the degree of unfairness is much larger in this result. This
experiment was done using ns-3 version 3.40. We also performed the same experiment using ns-3 version
3.44, which was the highest as of writing this paper. The result was completely different from that by
version 3.40. All of the sixteen BBR flows provided high throughput, and the fairness was high.

We examined the BBR source codes of version 3.40 and 3.44. We analyzed the source codes in detail, and
decided that there are not large differences between them. Next, we ported the version 3.44 BBR source
code into ns-3 version 3.40, and conducted the same experiment using 100 packet output buffer. The result
was similar with that in original version 3.40 case. This means that the difference between version 3.40 and
3.44 does not depend on the TCP related source code.

Although this paper could not point out the reason for the performance difference, we showed the details on
TCP BBR behaviors over ns-3 network simulator. When using ns-3 for network performance evaluation, much
care needs to be paid. We are planning to examine the ns-3 TCP BBR source code in more detail.

" NS U -)

