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Research & Activities
Specialises in automation and computer vision for industrial robotics
Focus areas include orientation detection for components in assembly systems
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"Computing the Orientation of Hardware Components from Images using Traditional Computer Vision Methods."
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Shares research experiences and advancements in automated assembly through university channels
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There is a growing need for efficient, object-centric
orientation prediction methods that can support diverse
manipulation tasks and work with various types of
robotic end-effectors. Moving beyond just stable
grasping toward robust post-grasp manipulation.

Post-Grasp Tasks

Background

Robotic grasping pipelines often focus on predicting
the gripper pose, typically using complex, multi-
parameter representations like grasp rectangles, which
are not easily generalisable and can be computationally
demanding.

Existing datasets and annotation protocols rarely
provide the required fine-grained orientation labels,
limiting the ability to develop and evaluate object pose
centric methods in real-world scenarios.

Challenge in Robotic Manipulation Datasets

Gripper Angle 143.6° Object Angle 193.3°
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Example Multi-Parameter Grasp Rectangle



Aims and Contributions

A comprehensive, systematic comparison of encoding schemes, integration strategies and shallow regression models for planar orientation prediction.
Actionable guidance for deploying reliable, interpretable orientation predictors in robotic manipulation, identifying XGBoost 1.7 with vector integration and quadrant encoding as the
optimal solution for real-world applications.

In our paper, we aimed to:

The contributions of our study are:

Slide 4/14
ADVCOMP2025

Develop and benchmark efficient, robust methods for planar object orientation prediction using shallow learning models and a single-angle 360° representation.
Design a practical annotation pipeline to enrich existing datasets with precise object orientation labels, enabling training and evaluation on both synthetic and real-world data
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Methodology Overview

Segment each object from the
greater image. 
Extract object patch; normalize
background and pad for uniformity.
Resize to standard input size
(224×224), preserving aspect ratio.

Use pre-trained ResNet50
(ImageNet, no classification head).
Extract a 2,048-dimensional feature
vector for each patch.

Input extracted features to shallow
regressor model.
Model outputs predictions according
to the chosen encoding.

Model outputs are encoded
Recovered by decoding:

Use the inverse tangent function to
combine sine/cosine predictions.
Angle is normalised to the standard
range (0°, 360°).

Patch extraction and
pre-processing

CNN Feature
Extraction

Regression
 (Orientation Prediction)

Outputs
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Angle Encoding Strategies
Base Encoding: 

Uses fundamental trigonometric components, encoding angles as [sin⁡(θ),cos⁡(θ)].
Quadrant Encoding: 

Extends base encoding with one-hot encoding for angular quadrants [sin⁡(θ),cos⁡(θ),Q1,Q2,Q3,Q4].
Polar Encoding: 

Adds the angle in radians to the trigonometric components [sin⁡(θ),cos⁡(θ),θrad].
Full Encoding: 

Combines all components for a comprehensive representation [sin⁡(θ),cos⁡(θ),Q1,Q2,Q3,Q4,θrad].

Encoding Approaches
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Model Architectures Tested

Branched Integration: 
Splits model outputs into separate branches for sine and cosine,
training them in parallel and combining outputs to recover the
angle.

Vector Integration: 
Predicts all target variables using a single multi-output model,
capturing relationships among outputs and enabling joint error
minimisation.

Integration Strategies

Model Supports Native Multi-Output Uses Wrapper for Multi-Output Unified Loss for Multi-Target

Random Forest (RF) ✓ ✓

SVR ✓

M-SVR ✓ ✓

XGBoost 1.7 ✓

XGBoost 2.0 ✓ ✓



Synthetic Dataset (MetaGraspNet)

Original MetaGraspNet:
100,000 RGB-D images
25 object types
5 difficulty levels

Designed for evaluating object
detection, segmentation, and
grasping in varied scenarios.

Created ground truth angles from
segmentation masks
10% of generated orientation
annotations manually validated
(allowed error ±10°).
Ensured data integrity for use as
ground truth.

Selected only Phillips and flat
screwdrivers. 
Initial subset: 7,932 annotations across
2,691 images from 9 camera poses

Removed objects with area <10,000 px
or annotations with obvious large annotation
errors (>180° deviation).

Reduced data to 5,709 cleaned
annotations.
Final split: 4,567 training (80%) / 1,142
testing (20%); all checked for
distribution and label quality.

MetaGraspNet
Overview

Orientation Annotation
& Validation

Subset: Single-Class,
Multiple-Instance

Subset

Cleaning, Filtering & Final
Split
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Annotation Creation Pipeline:
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Synthetic Dataset (MetaGraspNet)
Examples
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Real-World Dataset

Custom dataset of real RGB
images of screwdrivers captured
under varied lighting and
perspectives.
Comprises 27 images and 81
annotations: includes different
difficulty levels (single, cluttered,
and occluded objects)

Segment Anything Model (SAM) used
for mask generation.
Segmentation masks  validated by
three domain experts (high inter-
annotator IoU: 0.95).

Orientation angles annotated by
three domain experts (orientation
agreement ±1.8°).

Images captured at 3072 × 4080 pixels
resolution using a Samsung ISOCELL
GN9 sensor.
Lens aperture: f/1.9, exposure time:
1/100 second, ISO sensitivity: 386.
Images collected under uncontrolled
ambient daylight, from both overhead
and 45° angles, with three screwdriver
variants arranged on a white backdrop.

Overview Segmentation Orientation Annotation
& Validation

Image capture

01 0302 04

ADVCOMP2025



Slide 10/14

Real-World Dataset
Examples
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Dataset Distribution
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5,709 annotations 81 annotations
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Vector Integration Results

Model Base Quadrant Polar Full

XGBoost 1.7 5.15 5.15 5.15 5.15

XGBoost 2 4.92 5.01 5.46 5.17

M-SVR 8.04 8.04 8.04 8.04

SVR 5.01 5.12 5.01 5.01

Random Forest 5.48 5.08 5.87 5.67

Branched Integration Results

Model Base Quadrant Polar Full

XGBoost 1.7 5.15 5.15 5.15 5.15

SVR 5.01 5.12 5.01 5.01

Random Forest 7.43 5.44 5.93 5.88

Vector Integration MAAE Results

Model Base Quadrant Polar Full

XGBoost 1.7 9.61 8.15 8.96 9.61

XGBoost 2 17.09 13.91 7.18 10.46

M-SVR 28.86 28.86 28.82 28.82

SVR 23.13 23.54 23.14 28.03

Random Forest 14.81 14.49 11.84 17.43

Branched Integration Results 

Model Base Quadrant Polar Full

XGBoost 1.7 9.61 11.66 9.15 11.14

SVR 23.15 23.54 23.14 23.28

Random Forest 16.45 11.62 12.9 17.5

Vector Integration Inference Time Results

Model Type Base Quadrant Polar Full

XGBoost 1.7 0.76 1.86 0.91 1.73

XGBoost 2 0.76 1.86 0.91 0.29

M-SVR 17.76 17.78 17.8 17.76

SVR 13.48 41.94 20.78 51.25

Random Forest 59.27 56.5 57.9 45.42

Branched Integration Inference Time Results

Model Type Base Quadrant Polar Full

XGBoost 1.7 0.5 0.83 1.2 3.61

SVR 13.55 70.23 27.68 75.49

Random Forest 119.15 117.08 117.83 91.04
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Metric: Mean Absolute Angular Error (MAAE) in degrees—lower is better.
Compared: Models, encoding strategies, integration methods (vector vs. branched).
Datasets: MetaGraspNet (synthetic) and real-world (real-world).
Speed: Inference time per patch (milliseconds).

Experimental Results
 Key Focus

MetaGraspNet Dataset (MAAE in degrees) Real-World Dataset (MAAE in degrees)

Domain Gap Impact:
Synthetic → Real-world performance degradation significant
XGBoost 1.7: 5.15° → 8.15° (+58% error increase)
M-SVR: 8.04° → 28.86° (+259% error increase)
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Experimental Results (Real-world plots)
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Boundary Discontinuity Analysis:
XGBoost 1.7: Most stable across angular range, minimal boundary spikes
M-SVR/SVR: Severe errors at 0°/359° boundaries, erratic behaviour
XGBoost 2: Volatile at boundaries AND 180°, despite good MAAE

Integration Strategy Impact:
Vector preferred for XGBoost 1.7 + Quadrant encoding
Branched optimal for Random Forest + Quadrant encoding
Encoding sensitivity varies significantly by model architecture



Conclusion & Future Work

Conclusion:
XGBoost 1.7 (Vector + Quadrant) = Best configuration
Lowest real-world MAAE: 8.15°
<2ms inference → real-time capable
Stable predictions, mitigates boundary errors
Complex encodings (polar/full) = marginal gains, risk instability
SVR / M-SVR / RF → slower, less reliable, or erratic

Broader Insights
Synthetic → Real transfer gap is significant
Integration strategy matters (Vector > Branched for XGBoost)

Future Work
Deploy in real robotic grasping
Apply domain adaptation to close synthetic–real gap
Develop hybrid encodings (Quadrant + Polar)
Add temporal consistency metrics for sequential tasks
Benchmark vs deep learning for competitiveness

01
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Discussion & Analysis
SVR consistently gives high accuracy regardless of encoding, with errors tightly clustered and larger but less frequent outliers.
RF is clearly improved by vector encoding, but less stable than SVR, with occasional large errors.
All angular prediction errors are lowest for non-occluded objects, and highest under severe occlusion.

 Key Performance Metrics
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RF "snaps" to cardinals: Tree-based models excel at axis-aligned splits. Sin/cos encoding produces extreme values (1,0) or (0,1) at cardinal directions, making these much easier for decision trees to partition
precisely. Non-cardinal angles have intermediate values that are harder to split cleanly.
SVR smooths predictions: Support Vector Regression creates continuous, smooth prediction surfaces that interpolate evenly across the angle space. This reduces the accuracy spikes at cardinals but
maintains more consistent performance across all orientations.
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