

ORIENTATION PREDICTION FOR ROBOTIC MANIPULATION:

ANGLE ENCODING STRATEGIES FOR LINEAR REGRESSION

Faculty of Computing and Engineering – Intelligent Systems Research Centre University of Ulster – Magee Campus

Authors: Antonio Gambale
Professor Sonya Coleman, Dr Emmett Kerr, Dr Dermot Kerr, Dr Philip Vance, Dr
Cornelia Fermuller and Professor Yiannis Aloimonos

Antonio Gambale gambale-a@ulster.ac.uk

Professional Experience

- PhD Researcher, School of Computing, Engineering & Intelligent Systems, Ulster University
- PhD Researcher Representative, School of Computing, Engineering & Intelligent Systems, Ulster University

Research & Activities

- Specialises in automation and computer vision for industrial robotics
- Focus areas include orientation detection for components in assembly systems
- Additional research ongoing in autonomous hyperspectral weed identification

List of Publications

- "Computing the Orientation of Hardware Components from Images using Traditional Computer Vision Methods." 2023 The 39th International Manufacturing Conference (IMC39)
- "A Comparative Study of Hough Transform and PCA for Bolt Orientation Detection."

2024 IEEE 22nd International Conference on Industrial Informatics (INDIN)

• "Orientation Prediction for Robotic Manipulation: Angle Encoding Strategies for Linear Regression."

2025 Irish Machine Vision and Image Processing Conference (IMVIP)

Highlights & Initiatives

- Active representative for PhD researchers on university committees, promoting PhD community interests
- Shares research experiences and advancements in automated assembly through university channels

Background

Challenge in Robotic Manipulation

Robotic grasping pipelines often focus on predicting the gripper pose, typically using complex, multiparameter representations like grasp rectangles, which are not easily generalisable and can be computationally demanding.

Post-Grasp Tasks

There is a growing need for efficient, object-centric orientation prediction methods that can support diverse manipulation tasks and work with various types of robotic end-effectors. Moving beyond just stable grasping toward robust post-grasp manipulation.

Datasets

Existing datasets and annotation protocols rarely provide the required fine-grained orientation labels, limiting the ability to develop and evaluate object pose centric methods in real-world scenarios.

Gripper Angle 143.6°

Example Multi-Parameter Grasp Rectangle

Object Angle 193.3°

Aims and Contributions

In our paper, we aimed to:

- Develop and benchmark efficient, robust methods for planar object orientation prediction using shallow learning models and a single-angle 360° representation.
- Design a practical annotation pipeline to enrich existing datasets with precise object orientation labels, enabling training and evaluation on both synthetic and real-world data

The contributions of our study are:

- A comprehensive, systematic comparison of encoding schemes, integration strategies and shallow regression models for planar orientation prediction.
- Actionable guidance for deploying reliable, interpretable orientation predictors in robotic manipulation, identifying XGBoost 1.7 with vector integration and quadrant encoding as the optimal solution for real-world applications.

Methodology Overview

Patch extraction and pre-processing

- Segment each object from the greater image.
- Extract object patch; normalize background and pad for uniformity.
- Resize to standard input size
 (224×224), preserving aspect ratio.

CNN Feature Extraction

- Use pre-trained ResNet50 (ImageNet, no classification head).
- Extract a 2,048-dimensional feature vector for each patch.

Regression (Orientation Prediction)

- Input extracted features to shallow regressor model.
- Model outputs predictions according to the chosen encoding.

Outputs

- Model outputs are encoded
- Recovered by decoding:
 - Use the inverse tangent function to combine sine/cosine predictions.
 - Angle is normalised to the standard range (0°, 360°).

Angle Encoding Strategies

 $\tan^{-1}(\frac{\sin{(heta)}}{\cos{(heta)}}$

Encoding Approaches

Model Architectures Tested

• Base Encoding:

Uses fundamental trigonometric components, encoding angles as $[sin(\theta),cos(\theta)]$.

• Quadrant Encoding:

Extends base encoding with one-hot encoding for angular quadrants [$sin(\theta)$, $cos(\theta)$,Q1,Q2,Q3,Q4].

• Polar Encoding:

Adds the angle in radians to the trigonometric components $[sin(\theta), cos(\theta), \theta rad]$.

• Full Encoding:

Combines all components for a comprehensive representation [$sin(\theta)$, $cos(\theta)$,Q1,Q2,Q3,Q4, θrad].

Model	Supports Native Multi-Output	Uses Wrapper for Multi-Output	Unified Loss for Multi-Target		
Random Forest (RF)	✓		✓		
SVR		√			
M-SVR	✓		✓		
XGBoost 1.7		✓			
XGBoost 2.0	✓		✓		

Integration Strategies

• Branched Integration:

Splits model outputs into separate branches for sine and cosine, training them in parallel and combining outputs to recover the angle.

• Vector Integration:

Predicts all target variables using a single multi-output model, capturing relationships among outputs and enabling joint error minimisation.

Synthetic Dataset (MetaGraspNet)

Difficulty 4

Difficulty 4

Difficulty 5

Difficulty 1-2

MetaGraspNet **Overview**

- Original MetaGraspNet:
 - 100,000 RGB-D images
 - 25 object types
 - 5 difficulty levels
- Designed for evaluating object detection, segmentation, and grasping in varied scenarios.

02

Difficulty 1-2

Subset: Single-Class, Multiple-Instance **Subset**

- Selected only **Phillips and flat** screwdrivers.
- Initial subset: **7,932 annotations** across **2,691 images** from **9 camera poses**

Difficul 03

Orientation Annotation & Validation

- Created ground truth angles from segmentation masks
- 10% of generated orientation annotations manually validated (allowed error ±10°).
- Ensured data integrity for use as ground truth.

Difficulty 5 04

Difficulty 5

Cleaning, Filtering & Final Split

- Removed objects with area <10,000 px or annotations with obvious large annotation errors (>180° deviation).
- Reduced data to **5,709 cleaned** annotations.
- Final split: **4,567 training (80%) / 1,142** testing (20%); all checked for distribution and label quality.

Annotation Creation Pipeline:

Experimental Results

Key Focus

Difficulty 1-2

- Metric: Mean Absolute Angular Error (MAAE) in degrees—lower is better.
- Compared: Models, encoding strategies, integration methods (vector vs. branched).
- Datasets: MetaGraspNet (synthetic) and real-world (real-world).
- Speed: Inference time per patch (milliseconds).

Domain Gap Impact:

• Synthetic → Real-world performance degradation significant

Difficulty 1-2

- XGBoost 1.7: 5.15° → 8.15° (+58% error increase)
- M-SVR: 8.04° → 28.86° (+259% error increase)

Difficulty 1-2

MetaGraspNet Dataset (MAAE in degrees)

Vector Integration Results						
Model	Base	Quadrant	Polar	Full		
XGBoost 1.7	5.15	5.15	5.15	5.15		
XGBoost 2	4.92	5.01	5.46	5.17		
M-SVR	8.04	8.04	8.04	8.04		
SVR	5.01	5.12	5.01	5.01		
Random Forest	5.48	5.08	5.87	5.67		

Branched Integration Results						
Model	Base	Quadrant	Polar	Full		
XGBoost 1.7	5.15	5.15	5.15	5.15		
SVR	5.01	5.12	5.01	5.01		
Random Forest	7.43	5.44	5.93	5.88		

Vector Integration Inference Time Results					
Model Type	Base	Quadrant	Polar	Full	
XGBoost 1.7	0.76	1.86	0.91	1.73	
XGBoost 2	0.76	1.86	0.91	0.29	
M-SVR	17.76	17.78	17.8	17.76	
SVR	13.48	41.94	20.78	51.25	
Random Forest	59.27	56.5	57.9	45.42	

Branched Integration Inference Time Results						
Base	Quadrant	Polar	Full			
0.5	0.83	1.2	3.61			
13.55	70.23	27.68	75.49			
119.15	117.08	117.83	91.04			
	Base 0.5 13.55	Base Quadrant 0.5 0.83 13.55 70.23	Base Quadrant Polar 0.5 0.83 1.2 13.55 70.23 27.68			

Real-World Dataset (MAAE in degrees)

Difficulty 1-2

Vector Integration MAAE Results						
Model	Base	Quadrant	Polar	Full		
XGBoost 1.7	9.61	8.15	8.96	9.61		
XGBoost 2	17.09	13.91	7.18	10.46		
M-SVR	28.86	28.86	28.82	28.82		
SVR	23.13	23.54	23.14	28.03		
Random Forest	14.81	14.49	11.84	17.43		

Branched Integration Results						
Model	Base	Quadrant	Polar	Full		
XGBoost 1.7	9.61	11.66	9.15	11.14		
SVR	23.15	23.54	23.14	23.28		
Random Forest	16.45	11.62	12.9	17.5		

Experimental Results (Real-world plots)

-100

-150

-100

-150

Integration Strategy Impact:

- Vector preferred for XGBoost 1.7 + Quadrant encoding
- Branched optimal for Random Forest + Quadrant encoding
- Encoding sensitivity varies significantly by model architecture

True Anale (°

-150

Conclusion & Future Work

Conclusion:

- XGBoost 1.7 (Vector + Quadrant) = Best configuration
- Lowest real-world MAAE: 8.15°
- <2ms inference → real-time capable
- Stable predictions, mitigates boundary errors
- Complex encodings (polar/full) = marginal gains, risk instability
- SVR / M-SVR / RF → slower, less reliable, or erratic

Broader Insights

- Synthetic → Real transfer gap is significant
- Integration strategy matters (Vector > Branched for XGBoost)

Future Work

- Deploy in real robotic grasping
- Apply domain adaptation to close synthetic-real gap
- Develop hybrid encodings (Quadrant + Polar)
- Add temporal consistency metrics for sequential tasks
- Benchmark vs deep learning for competitiveness

Discussion & Analysis

Key Performance Metrics

- SVR consistently gives high accuracy regardless of encoding, with errors tightly clustered and larger but less frequent outliers.
- RF is clearly improved by vector encoding, but less stable than SVR, with occasional large errors.
- All angular prediction errors are lowest for non-occluded objects, and highest under severe o

- RF "snaps" to cardinals: Tree-based models excel at axis-aligned splits. Sin/cos encoding produces extreme values (1,0) or (0,1) at cardinal directions, making these much easier for decision trees to partition precisely. Non-cardinal angles have intermediate values that are harder to split cleanly.
- **SVR** smooths predictions: Support Vector Regression creates continuous, smooth prediction surfaces that interpolate evenly across the angle space. This reduces the accuracy spikes at cardinals but maintains more consistent performance across all orientations.