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Professional Experience

o PhD Researcher, School of Computing, Engineering & Intelligent Systems, Ulster University
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Research & Activities

e Specialises in automation and computer vision for industrial robotics

e Focus areas include orientation detection for components in assembly systems

« Additional research ongoing in autonomous hyperspectral weed identification
List of Publications

e "Computing the Orientation of Hardware Components from Images using Traditional Computer Vision Methods."
2023 The 39th International Manufacturing Conference (IMC39)

e "A Comparative Study of Hough Transform and PCA for Bolt Orientation Detection."
2024 IEEE 22nd International Conference on Industrial Informatics (INDIN)

» "Orientation Prediction for Robotic Manipulation: Angle Encoding Strategies for Linear Regression."

2025 Irish Machine Vision and Image Processing Conference (IMVIP)

Highlights & Initiatives

« Active representative for PhD researchers on university committees, promoting PhD community interests
» Sharesresearch experiences and advancements in automated assembly through university channels
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Background

Challenge in Robotic Manipulation Post-Grasp Tasks Datasets

Robotic grasping pipelines often focus on predicting There is a growing need for efficient, object-centric Existing datasets and annotation protocols rarely

the gripper pose, typically using complex, multi- orientation prediction methods that can support diverse provide the required fine-grained orientation labels,
parameter representations like grasp rectangles, which manipulation tasks and work with various types of limiting the ability to develop and evaluate object pose
are not easily generalisable and can be computationally robotic end-effectors. Moving beyond just stable centric methods in real-world scenarios.

demanding. grasping toward robust post-grasp manipulation.

Gripper Angle 143.6° Object Angle 193.3°

Example Multi-Parameter Grasp Rectangle

h i
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Aims and Contributions

In our paper, we aimed to:

Develop and benchmark efficient, robust methods for planar object orientation prediction using shallow learning models and a single-angle 360° representation.
Design a practical annotation pipeline to enrich existing datasets with precise object orientation labels, enabling training and evaluation on both synthetic and real-world data

The contributions of our study are:

optimal solution for real-world applications.

A comprehensive, systematic comparison of encoding schemes, integration strategies and shallow regression models for planar orientation prediction.
Actionable guidance for deploying reliable, interpretable orientation predictors in robotic manipulation, identifying XGBoost 1.7 with vector integration and quadrant encoding as the

A Slide 4/14
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Methodology Overview

Patch extraction and CNN Feature Regression Outputs
pre-processing Extraction (Orientation Prediction)

e Input extracted features to shallow e Model outputs are encoded
regressor model. e Recovered by decoding:
e Model outputs predictions according o Use the inverse tangent function to
to the chosen encoding. combine sine/cosine predictions.
o Angle is normalised to the standard
range (0°, 360°).

e Segment each object from the e Use pre-trained ResNet50
greater image. (ImageNet, no classification head).

e Extract object patch; normalize e Extract a 2,048-dimensional feature
background and pad for uniformity. vector for each patch.

e Resize to standard input size
(224%x224), preserving aspect ratio.

D Data (Input/Output/Target) D Feature Extraction Block

Target: [sin, cos +
Additional targets]

Vector Integration

Y
Model Pred. . 5
‘ Multi-output K [sin, cos] +[PerICICd Anglt,]
= / Target: [sin +
] ResNet50 =
Original || _ | Segmented |  HEcu_ Additional targets)
Image Object
Features Y
\ Sine branch = Pred. sine

- i
Model Predicted Angle
Branched | o

Cosine branch ~| Pred. cos

Branched Integration A
Target: [cos +
Additional targets] ~
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Angle Encoding Strategies

Encoding Approaches

» Base Encoding:

Uses fundamental trigonometric components, encoding angles as [sin(0),cos(0)].
e Quadrant Encoding:

Extends base encoding with one-hot encoding for angular quadrants [sin(0),cos(0),Q1,Q2,Q3,Q4].
» Polar Encoding:

Adds the angle in radians to the trigonometric components [sin(8),cos(6),0rad].
e Full Encoding:

Combines all components for a comprehensive representation [sin(0),cos(6),Q1,Q2,Q3,Q4,0rad].

Model Supports Native Multi-Output

Random Forest (RF) v

SVR

M-SVR

XGBoost 1.7

XGBoost 2.0

Model Architectures Tested

Uses Wrapper for Multi-Output Unified Loss for Multi-Target

v

Integration Strategies

. Vector Integration
* Branched Integration:

Splits model outputs into separate branches for sine and cosine,
training them in parallel and combining outputs to recover the

ang|e. Original Segmented
Image
e Vector Integration:
Predicts all target variables using a single multi-output model,

capturing relationships among outputs and enabling joint error

minimisation. Branched Integration

Target: [sin, cos +
Additional targets|

Model Pred.
Multi-output [sin, cos]

Target: [sin +
Additional targets]
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Synthetic Dataset (MetaGraspNet)

0O © © O

MetaGraspNet Subset: Single-Class, Orientation Annotation Cleaning, Filtering & Final
Overview Multiple-Instance & Validation Split
Subset
e Original MetaGraspNet: « Created ground truth angles from * Removed objects with area <10,000 px

o Selected only Phillips and flat

o 100,000 RGB-D images segmentation masks or annotations with obvious large annotation
screwdrivers.

o 25 object types « 10% of generated orientation errors (>180° deviation).
¢ [nitial subset: 7,932 annotations across Reduced d 5709 cl d
2 691im from © camer annotations manually validated * Reduceddatato 5,709 cleane
o Designed for evaluating object ! Images from 2 camera poses (allowed error +10°). annotations.

o 5difficulty levels

detection, segmentation, and « Ensured data integrity for use as » Final split: 4,567 training (80%) / 1,142
grasping in varied scenarios. ground truth. testing (20%); all checked for
distribution and label quality.

Annotation Creation Pipeline:

@ 7
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Synthetic Dataset (MetaGraspNet)
Examples
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Difficulty 5 Difficulty 1-2 Difficulty 1-2 Difficulty 5 Difficulty 1-2 Difficulty 4 Difficulty 5

Real-World Dataset

Difficulty 5 Difficulty 4 Difficulty 1-2
. Ll L] o L] Ll
Overview Image capture Segmentation Orientation Annotation
o Custom dataset of real RGB e Images captured at 3072 x 4080 pixels > SEgmentAmiting Meel R usas & Validation F
. . . . for mask generation. ) ;
images of screwdrivers captured resolution using a Samsung ISOCELL Orientation angles annotated by
e e Segmentation masks validated by , , .
under varied ||ght|ng and GNO9 sensor. ; ; ; three domain experts (Or|entat|on
: , . three domain experts (high inter-
perspectives. o Lensaperture: f/1.9, exposure time: agreement +1.8°).
o Comprises 27 images and 81 1/100 second, ISO sensitivity: 386. SAGIENE] et OLk)
annotations: includes different e Images collected under uncontrolled Parameter
difficulty levels (single, cluttered, ambient daylight, from both overhead E',;ﬂ'pz:rﬂ‘ ke
and occluded objects) and 45° angles, with three screwdriver i M
variants arranged on a white backdrop. Subily Score Threshold 095
Crop N Layers 0
Crop Overlap Ratio 0.3413
[
»
D: 70 U
) - [
B —— o



Difficulty 5
)

Difficulty 1-2

Difficulty 5

Difficulty 5
)

Difficulty 1-2

Difficulty 1-2

Real-

Difficulty 1-2 Difficulty 1-2

Difficulty 5
)

orid Dataset
xample

Difficulty 5

Difficulty 1-2

Difficulty 5

Difficulty 4

Difficulty 4
,

Difficulty 4 Difficulty 1-2 Difficulty 5 Difficulty 1-2 Difficulty 4 Difficulty 5
s
: " ‘ N »
| ¥
- -
Difficulty 1-2 Difficulty 1-2 Difficulty 5 Difficulty 1-2 Difficulty 5 Difficulty 1-2
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Difficulty 5 Difficulty 1-2 Difficulty 4 Difficulty 5

W 5 "

Dataset Distribution

Difficulty 1-2 Difficulty Ity 1-2 Difficulty 1-2

5,709 annotations 81 annotations

MetaGraspNet Subset Angle Distribution (10° Bins) Real-World Test Set Angle Distribution (10° Bins)

B Train (n=4567) 71 mmm Test (n=81)
Bl Test (n=1142)

Number of Images
= = =
~J o mJ un
un o u o
Number of Images

un
(=]

M
(6]

o

135° 180° 225° 270° 315° 135° 180° 225° 270° 315°
Angle (degrees) Angle (degrees)

N

ADVCOMP2025 | .,

uﬁASIide 11/14
L\



Experimental Results

Key Focus

Metric: Mean Absolute Angular Error (MAAE) in degrees—lower is better. Domain Gap Impact:

Compared: Models, encoding strategies, integration methods (vector vs. branched). * Synthetic = Real-world performance degradation significant

Datasets: MetaGraspNet (synthetic) and real-world (real-world). * XGBoost1.7:5.15° — 8.15° (+58% error increase)

Speed: Inference time per patch (milliseconds). * M-SVR: 8.04° = 28.86° (+259% error increase)

MetaGraspNet Dataset (MAAE in degrees) Real-World Dataset (MAAE in degrees)
Vector Integration Results Vector Integration Inference Time Results _ Vector Integration MAAE Results
Model Base Quadrant Model Type Base Quadrant Polar Full Model Base Quadrant Polar
XGBoost 1.7 5.15 5.15 : : XGBoost 1.7 0.76 1.86 091 1.73 XGBoost 1.7 9.61 8.15 8.96
XGBoost 2 4.92 5.01 . . XGBoost 2 0.76 1.86 0.91 0.29 XGBoost 2 17.09 13.91 7.18
M-SVR 8.04 8.04 _ , M-SVR 17.76 1778 178 1776 M-SVR 28.86 28.86 28.82
SVR 5.01 5.12 5.01 5.01 SVR 13.48 41.94  20.78 51.25 SVR 23.13 23.54 23.14 28.03
Random Forest 5.48 5.08 5.87 5.67 Random Forest ~ 59.27 56.5 57.9 45.42 Random Forest 14.81 14.49 11.84 17.43
Branched Integration Results Branched Integration Inference Time Results 200 1R e [EsiE

Model Base Quadrant Polar Full Model Type Base Quadrant Polar Full Model Base Quadrant Polar Full
XGBoost 1.7 5.15 5.15 5.15 5.15 XGBoost 1.7 0.5 0.83 1.2 3.601 XGBoost 1.7 9.01 11.66 9.15 11.14
SVR 5.01 5.12 501 501 SVR 13.55 70.23 27.68 75.49 SVR 2315 23.54 23.14 23.28
Random Forest 7.43 5.44 5.93 5.88 Random Forest 119.15 117.08 117.83 91.04 Random Forest 16.45 11.62 12.9 17.5

N
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Experimental Results (Real-world plots)

Ablation Configurations

— Baseline — Base+Quad — Base+Polar - Comp
MSVR (VECTOR) XGB2 (VECTOR) XGB1.7 (VECTOR) SVR (VECTOR) RF (VECTOR)

150 4 150 1 150 150 A

100 1 100 1 100

50 50 - :é

0T 1 D+ E
=301 -50 E
-100 - -100 | {{{ -100 -100 A
=150 A =150 1|Ih 150 1 —150 =150 1

0 s0 10 150 200 250 0 350 0 s 100 150 200 250 300 350 0 S 100 150 200 250 300 350 0 s 100 150 200 280 300 30 0 S0 100 150 200 250 30 350
True Angle () True Angle (%) True Angle (%) True Angle (%) True Angle (*)
XGB1.7 (BRANCH) SVR (BRANCH) RF (BRANCH) . R . R
Boundary Discontinuity Analysis:
150 150
. o e XGBoost 1.7: Most stable across angular range, minimal boundary spikes
N e M-SVR/SVR: Severe errors at 0°/359° boundaries, erratic behaviour
N, 5 e XGBoost 2: Volatile at boundaries AND 180°, despite good MAAE
-50 A E .
] ¢ Integration Strategy Impact: |
o . ] e Vector preferred for XGBoost 1.7 + Quadrant encoding
—_— ] e Branched optimal for Random Forest + Quadrant encoding
True Angle (°) True Angle (7 True Angle (% e Encoding sensitivity varies significantly by model architecture
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Conclusion & Future Work

Conclusion:
e XGBoost 1.7 (Vector + Quadrant) = Best configuration
e | owest real-world MAAE: 8.15°
<2ms inference — real-time capable
Stable predictions, mitigates boundary errors
Complex encodings (polar/full) = marginal gains, risk instability
SVR / M-SVR / RF — slower, less reliable, or erratic
Broader Insights

e Synthetic = Real transfer gap is significant

¢ Integration strategy matters (Vector > Branched for XGBoost)
Future Work

e Deploy in real robotic grasping

e Apply domain adaptation to close synthetic-real gap
Annotated Angles:

: : : ID: 8 60.0°
e Add temporal consistency metrics for sequential tasks g

e Develop hybrid encodings (Quadrant + Polar)

e Benchmark vs deep learning for competitiveness ID: 10 215.0°
ID: 11 30.0°

h
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Discussion & Analysis

Key Performance Metrics

e SVR consistently gives high accuracy regardless of encoding, with errors tightly clustered and larger but less frequent outliers.
e RF is clearly improved by vector encoding, but less stable than SVR, with occasional large errors.
e Allangular prediction errors are lowest for non-occluded objects, and highest under severe o i = EONE = A

Base+ Quad m— Ease+Polar — O

MSVR (VECTOR) XGB2 (VECTOR) XGBL.7 (BRANCH) XGB1.7 (VECTOR)

RF: Vector Model RF: Trigonometric Model 1=

0]
;

0

'f”/ [ - T’ WV

or {*)

(Meause.

Prediction Erm

=100

i -150 | = o. 5

2] 150 200 5 L] S0 100 150 X0 Bl 00 E0 a 50 100 159 il pota] i) 2] 10 150 ] 0 350
RF {(BRANCH) RF (VECTOR) SVR (BRANCH) SVR (VECTOR) [ B | =

} .

Prediction Error (°)
Predictibn Hrror (°)

or {*)

Prediction Erm
|

0 W0 150 00 B0 00 [0 50 W0 B0 W 3 5 100 150 0 0 150 W0 250 3N
True Angle (%) True Angle (%) True Angls (%) True Angle (%)
180 180 s v

FRELY] v iV FETIv

True Angle (°) True Angle (°) True Angle (°) True Angle (°)

e RF "snaps" to cardinals: Tree-based models excel at axis-aligned splits. Sin/cos encoding produces extreme values (1,0) or (0O,1) at cardinal directions, making these much easier for decision trees to partition
precisely. Non-cardinal angles have intermediate values that are harder to split cleanly.

e SVR smooths predictions: Support Vector Regression creates continuous, smooth prediction surfaces that interpolate evenly across the angle space. This reduces the accuracy spikes at cardinals but
maintains more consistent performance across all orientations.
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