

Repairing is Caring - An Approach to an Al-Supported Product-Service-System for Bicycle Lifecycle Prolonging

International Conference on Adaptive and Self-Adaptive Systems and Applications 7th April 2025

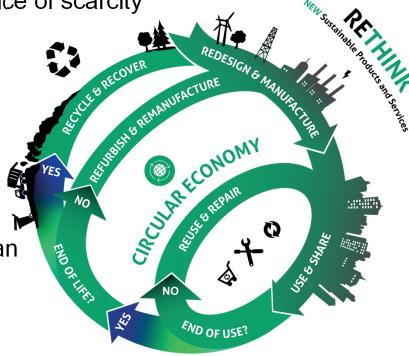
Presenter:

Mohammed Fahad Ali, M.Sc. Institute for Software and System Engineering Clausthal University of Technology, Germany

Authors:

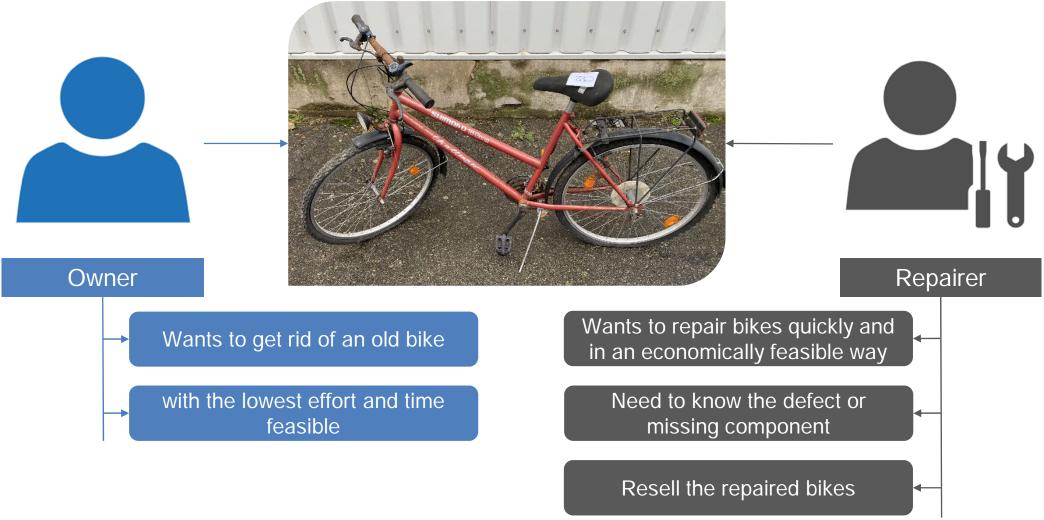
Mohammed Fahad Ali, Dominique Briechle, Marit Briechle-Mathiszig, Tobias Geger and Andreas Rausch

Outline


- Motivation
- Problem Scenario: Bicycle Owner and Repairer Perspective
- Data Collection Process for Lifecycle Decision
- Bicycle dataset: Acquisition, Overview, and Distribution
- Al-based Methodology: Architecture and Modeling Process
- Results: Defect Detection and Repairability Assessment use case
- Bicycle Repair Ecosystem
- Limitation and Future Outlook

TED GREEN AND SON

Motivation


- Earth has finite resources, resulting in an increasing prevalence of scarcity
- Therefore, transforming to a circular economy helps:
 - reduces waste
 - Increases the lifespan of products
 - Create a sustainable ecosystem on a large scale
- Repairing is a sustainable option to extend a product's lifespan
- Bicycles are good examples for reuse:
 - It plays an essential role in today's mobility ecosystems
 - Reduce the rate of emissions
 - Requires less space compared to other mobility solutions

Problem Scenario

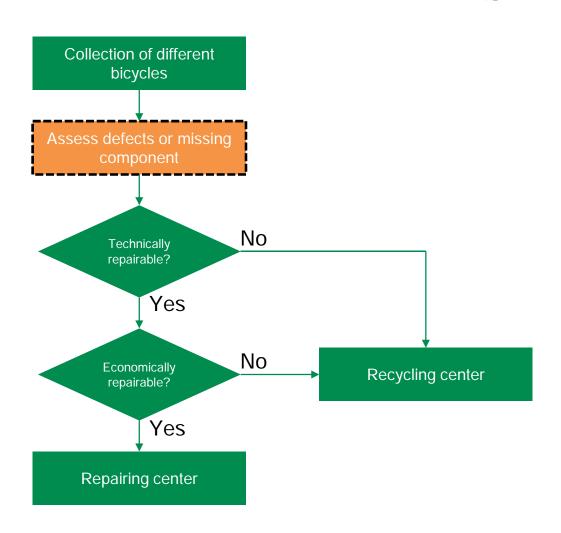
Mohammed Fahad Ali, M.Sc. ISSE – Institute for Software and Systems Engineering

Repairer perspective

Is the bicycle technically repairable?

What components need to be repaired or replaced?

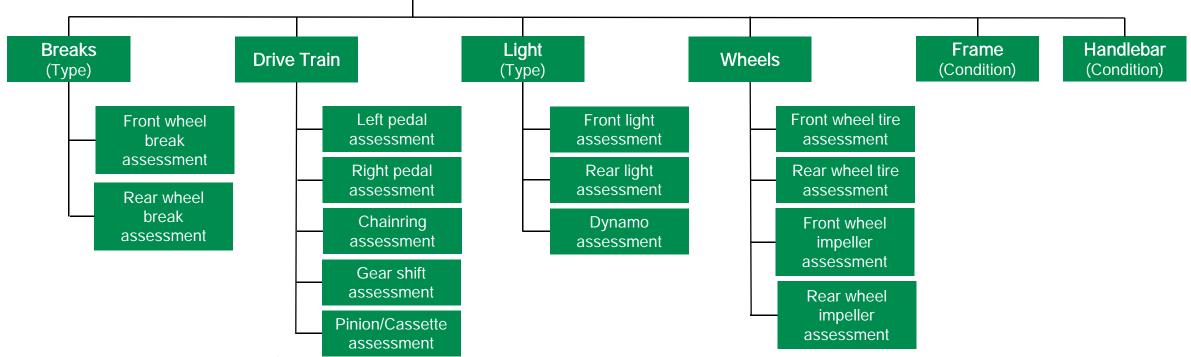
Does it make economic sense for the repairer to repair a bike?


Can old components be used for repair?

GREEN JECH 185%

Data Collection Process for Lifecycle Decision

- Collection of 112 old bicycles during the phase of one month
- Identification of missing or defective components
- If the bicycle is repairable:
 - The defect is repaired
 - Missing components are replaced
- If the bicycle is not repairable, it directly goes to the recycling center



Bicycle Data Acquisition

Bicycle

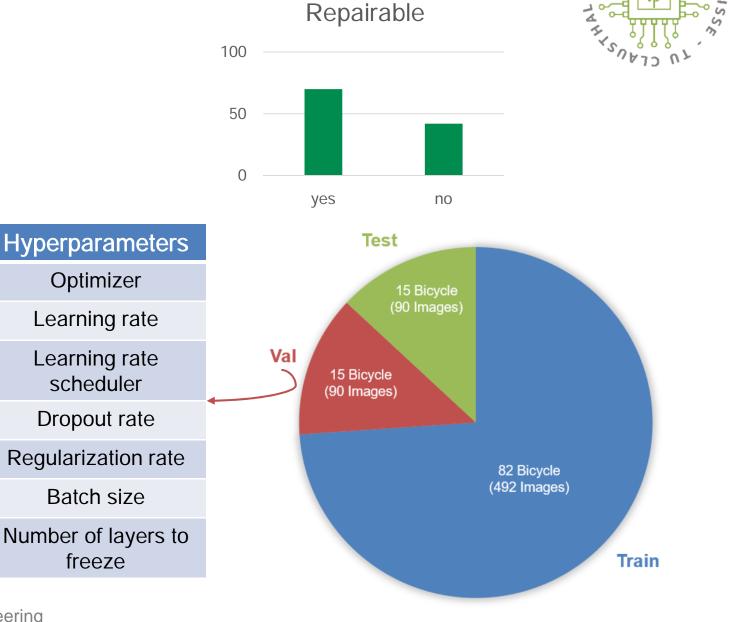
- Manufacturer
- Bike Type
- Wheel size
- Gearshift Type
- Number of Gears

- Gather the details on each parts
- Guide to assess the overall condition of the bicycle
- Talking with the repairer
- Options for each component:
 - functional
 - defect
 - missing
- Classify the bike as repairable or not (for our repairer)

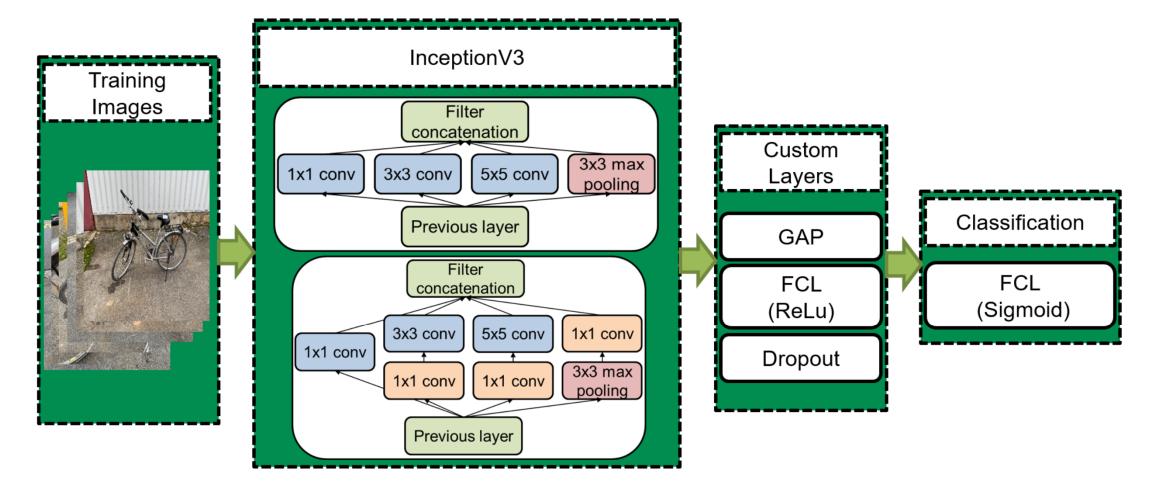
Mohammed Fahad Ali, M.Sc.

ISSE - Institute for Software and Systems Engineering

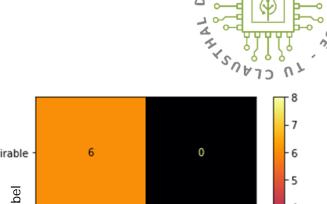
Dataset Overview

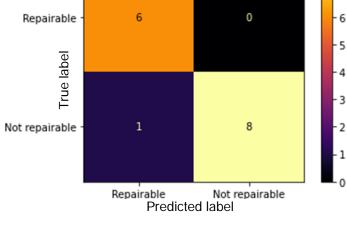


Dataset Distribution

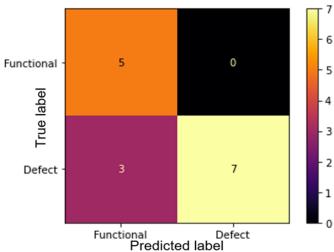

- Total 112 bicycles:
 - Correspond to 672 images
- 70 bicycles are repairable:
 - Correspond to 420 images
- 42 bicycles are not repairable:
 - Correspond to 252 images

Al Architecture

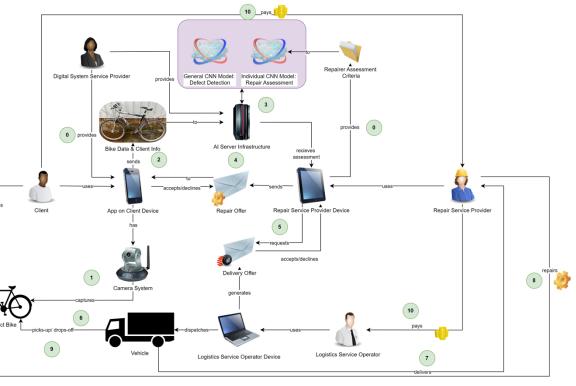




Achieved Results


		Precision	Recall	F1-score	Support
)	Repairable	0.86	1.00	0.92	6
	Not repairable	1.00	0.89	0.94	9
-					
	accuracy			0.93	15
	macro avg	0.93	0.94	0.93	15
	weighted avg	0.94	0.93	0.94	15

		Precision	Recall	F1-score	Support
	Repairable	0.62	1.00	0.77	5
	Not repairable	1.00	0.70	0.82	10
→					
	accuracy			0.80	15
	macro avg	0.81	0.85	0.80	15
	weighted avg	0.88	0.80	0.81	15


Mohammed Fahad Ali, M.Sc. ISSE – Institute for Software and Systems Engineering

GREEN SCH ISS

Product-Service-System for bicycle repairing

- Step 1: The client initiates the process
- Step 2: Processing of images and sending them to the Al Server Infrastructure
- Step 3: Repairability assessment by the model, trained on the assessment criteria of the repairer
- Step 4: The repairer submits an offer to the Client
- Step 5: The repairer contacts the logistics provider
- Steps 6 & 7: The logistics provider picks up the bicycle
- Steps 8 & 9: Repairing and returning the bicycle to the client

Limitation and Future Outlook

- Examining the robustness of the model in the case of detecting defects for multiple components
- So far, the Al-based models are configured in line with the operational contexts and requirements of the specific repairer...
- Developing reconfigurable pipeline framework:
 - ➤ Human in the loop → Active learning
 - Receiving feedback from the system stakeholders to align with their unique operational contexts and respective needs
 - Customization of training processes according to specific requirements

Limitation and Future Outlook

TED GREEN ARCH ISSN

- Adapting the hyperparameter optimization workflow to identify damages and thus guide repairability decisions
- Finding the right balance between generalizability and specificity
- What about the ecological impact?

TED GREEN ACCH ISSN

References

- [1] M. A. de Chatillon, "Appropriating the bicycle: Repair and maintenance skills and the bicycle–cyclist relationship," Becoming Urban Cyclists: From Socialization to Skills, Chester University Press, 2022.
- [2] T. Geger, D. Briechle, M. Briechle-Mathiszig, N. Nyeck, and R. Werner, "Collectbycycle: Towards an automatized condition assessment for bicycles," in ADAPTIVE 2024, The Sixteenth International Conference on Adaptive and Self-Adaptive Systems and Applications, vol. 16, 2024, pp. 13–16.
- [3] DIN. "R-strategy framework." (2019), [Online]. Available: https://www.din.de/en/innovation-and-research/circular-economy/standards-research-on-the-circular-economy/r-strategy-framework (visited on 02/28/2025).
- [4] F. Blomsma, L. Kjaer, D. Pigosso, T. McAloone, and S. Lloyd, "Exploring circular strategy combinations-towards understanding the role of pss," Procedia CIRP, Elsevier, vol. 69, pp. 752–757, 2018, 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April 2 May 2018, Copenhagen, Denmark, ISSN: 2212-8271. DOI: https://doi.org/10.1016/j.procir.2017.11.129.
- [5] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, "Convolutional neural networks: An overview and application in radiology," Insights into imaging, vol. 9, pp. 611–629, 2018, Springer.
- [6] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9. arXiv: 1409.4842.
- [7] C₂ . F. O" zgenel and A. G. Sorguc₃, "Performance comparison of pretrained convolutional neural networks on crack detection in buildings," in Isarc. proceedings of the international symposium on automation and robotics in construction, IAARC Publications, vol. 35, 2018, pp. 1–8. DOI: 10.22260/ISARC2018/0094.
- [8] L. Petricca, T. Moss, G. Figueroa, and S. Broen, "Corrosion detection using AI: A comparison of standard computer vision techniques and deep learning model," in The Sixth International Conference on Computer Science, Engineering and Information Technology, AIRCC Publishing Corporation Chennai, India, vol. 5212016, 2016, pp. 91–99.
- [9] Z. Zou, X. Zhao, P. Zhao, F. Qi, and N. Wang, "Cnn-based statistics and location estimation of missing components in routine inspection of historic buildings," Journal of Cultural Heritage, vol. 38, pp. 221–230, 2019, Elsevier, ISSN: 1296-2074. DOI: https://doi.org/10.1016/j.culher.2019.02.002.
- [10] H.-Y. Liao, B. Esmaeilian, and S. Behdad, "Automated evaluation and rating of product repairability using artificial intelligence-based approaches," Journal of Manufacturing Science and Engineering, American Society of Mechanical Engineers, vol. 146, no. 2, p. 020 901, 2024, ISSN: 1087-1357. DOI: 10.1115/1.4063561. eprint: https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/146/2/020901/7056454/manu\ 146\ 2\ 020901.pdf.
- [11] R. M. Moalem and M. A. Mosgaard, "A critical review of the role of repair caf´es in a sustainable circular transition," Sustainability, vol. 13, no. 22, 2021, ISSN: 2071-1050. DOI: 10.3390/su132212351. [Online]. Available: https://www.mdpi.com/2071-1050/13/22/12351 (visited on 02/26/2025).
- [12] C. Cheung, K. Kuzmina, and S. Prendeville, "Service blueprint for sustainable business model evaluation," Design Management Academy, pp. 848–875, 2019, Conference proceedings of the Academy of Design and Innovation Management 2019: Research Perspectives In the era of Transformations, ISSN: 2632-0045.
- [13] J. Deng et al., "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, leee, 2009, pp. 248–255.

Thank you very much for your attention!