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v Autonomous Platooning and Autonomous Following

Benefits of autonomous platooning
e Reduction of drivers;

e Reduction of traffic accident;

e Reduction of traffic jam;

e Emission of CO.,.

Autonomous platooning
e Autonomous driving (leader vehicle)
e Autonomy fails at some point.
* Applies to only leader vehicle.
e Autonomous following (follower vehicles)
e Easier task
* Applies to all following vehicles.
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v Past Work on Autonomous Following

VLC down link

e Autonomous following on public roads [Assidiq, et al,
2008]

— Lane detection
— Distance minimization in confined space
e Multi-robot cooperation with communication
— Formation control: Centralized
— Leader-follower approach: Autonomous following

e Path planning [Madhevan, et al, 2013]
e Trajectory planning [Gasparetto, et al, 2015]

Platoon member vehicles P

e Replanning with communication [Wu, et al, 2018] Obstacle detection by the Leader front sensor
Alarm propagation to followers
. . . . ]\/- V1 (leader
Autonomous following with communication has been 7~
. . &
proposed only with an autonomous leader vehicle. Va

Autonomous following with communication
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Objectives

e Develop an autonomous following technique with communication when a
leader vehicle is manually driven;

e Demonstrate and validate the efficacy of the proposed technique.

Outline

1. Recursive Bayesian Estimation and Receding
Horizon Control

2. Proposed autonomous following

. Experimental validation

4. Conclusions and future work

w
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v Motion and Sensor Models of Leader and Follower Vehicles
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Motion Models

Leader vehicle: Control is unknown k: Time step

o — ¢l (xl wl) |: Leader vehicle
K e f: Follower vehicle

Follower vehicle: Control is autonomous X(') - State

k
()
xf: — ff (X£—1=u£vW£) U,” :Control
W() : Motion noise

Sensor Model f ZIk : Observation of | by f

Sensor on follower vehicle . .
f VIk : Observation noise
. 1.1 _f l
Tzl =7h (x ,xk,ka)

The leader’s state may be observable, but its intention may not be
unknown.
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Recursive Bayesian Estimation

Initial guess

Prediction

L(fal ~f
p(xk| Zyp—1y X1

)

A ~

N X,

: Instance of follower state

p() : Probability density representing belief

(follower state is assumed to be known)

v

¥l l ~1 - l
= /X! D (Xk«lffzv—*r}P (xk—lllezk—lvxf:k—l) X},

70N
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p ~
7/
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Correction

L f=l ~
P (xklle:k:ax

/ p(x'klx'k_l) : Motion model

A
A Y

\
\

\ k -> k-1

v

L|fal = f
P(Xk| Zl:k—lﬂxlzk—l)

Lfal = f l
p (xklle:k—vxl:k—l) dx,

A

A

\ 4

Prediction

p(x

A 4

Correction

p(X,

v

f

f

I f
Zl‘k—l ! Xl‘k—l

| f
Ly Xk )

| (XIk | f Zlk_l) : Observation likelihood from sensor model
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Conventional Autonomous Following

Observation based

2 u’
k+1
where x£+1 =/ (i]{au£+lﬁwljs:+l)
Prediction based J (p (xk-[-n 17z k,x{k))
(Receding Horizon l
Control; RHC) without = Hg (P (xk+nc|le kvi{ k)) - (x£+nc T dk) ” ~ u’/ mln
k+1:k+nc

communication

~f
P (Xk+n| Z1 ks X1k

xf — ff (ii-i-ﬁ

where

k+rk

_17uk+ﬁ;7wk+n) VH E {].,...,

) — /Xi P (xgc+n|x;lk:+&—1) P (X

f f

l

ne}

k+rk— 1| Zl k7x1 k) dxka

Following is determined only from the leader’s state.
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v Proposed Autonomous Following with Vehicle Connection
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Prediction from
state
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MM Non-Gaussian Prediction with Gaussian Sensor Fusion

[ % e ¥ |

Outline o . . ___— More accurate than EKF
1. Prediction by particle filter
Recursive _ o, o ) o)
E— Without control Xpi .41 = f (Xk+nvwk ) )
Estimation and 8 5 3, B.i 3,
. . J— ¢ ? L
Receding With control Xj . ; = f (qu—fg 1’uk:—>np Wk ) ?

Horizon Control

2. Gaussian approximation
\ Valid as noise is Gaussian

Proposed _
autonomous O th(),l
following k+nk K+ny
Experimental 13 - - T
xperimenta 2‘t(.) __Z Xt(')'l _it(.) Xt(')’l _it(.)
validation k+n, — N K-+, K+n, K-+ K-+
i=1
Conclusions and 3. Gaussian approximation — Gaussian sensor fusion
future work
tn
Zk+n Zk
Yt — Kk th +N, —th
K+ny Z K+ tn n Zth K+ny
k+nl< K+ K+ K+ny
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Experimental Platform

|
Recursive Bayesian Feedback Club Car Components Actuators
Estimation and Steering -
Brake Electric Power
Receding Horizon e Wheel Steering (EPS)
Module
Control Router L Acceleration Battery
Encoder | Servo Motor
Proposed || Electronic Control Unit 1
autonomous (ECU) PEDG
followin 48V-12V
8 & User Input Raspberry Pi 4B B
e : 12V-19.5V
i SRy e S Emergency
Experimental NLITpe— TN Stop (3x) R(gla;y pigipot | | FS&R" '
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validation Club Car golf cart Processors
Autonomy
Enable Intel NUC
Conclusions and Original Contribution
future work
Parameters Of Paramcl(‘r \'aluc
L 1.2 [m]
autonomous follower ol 8.5 [(m/s)
d 4 [m]
=" [0.1,0,0,0.087] [,m,m,m)]
wo [0.5,0.5] [m,m)]
B [0.05,0,0,0.017] [m,m,m,m]
wp [0.5,0.5] [m,m)
>l [0.5,0,0,0.087] [m,m,mm]
N 1000
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Proposed Prediction vs. Conventional Prediction
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Conventional prediction
shows large prediction
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Quantitative Results
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Conclusions and Future Work

Outline

Recursive Conclusions Acknowledgments to

Bayesian

Estimation and e |ncorporation of vehicle '/m

Recedlng CO n n ectio n; The Mark of Linear Motion

Horizon Control Ingersoll Rand.

e Fusion of non-holonomic motion
Proposed and driver’s intention
autonomous . . .
following e Experimental validation of effect

of incorporation of human
Experimental intention and its uncertainty

lidati
VAeaton Future work
Conclusions and e Validation with real golf carts

future work e Incorporation of obstacle and
collision avoidance Tomonari Furukawa

tomonari@virginia.edu
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Robotic Escorting
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Y
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> X

Difficulty of escorting compared to tracking
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[Conte&Furukawa, ICRA, 2021]
[Conte&Furukawa, JFR, 2021]

Rationale

Positional adjustment of escorting (front
following) is much more than tracking
(following from behind).

Distance to adjust

Track Ad}ézﬂ =2(D —1) \/1 — cos(ftmax)

Escort  Ady’p, = 2(D + 1)\/1 — cos(ftmax)

A5 > A, V> 0 & (00| < 7 /2




We Look Where We Walk
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Incorporation of Intention for Human Pose Prediction

Outline
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Escorting Simulation Results
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e Comparing proposed method to existing
techniques for a single walk path

o
T

[ |= = ideal robot position

human position

robot position: no prediction
== robot position: conventional prediction
robot position: proposed prediction

Position error (m)

no prediction
== conventional prediction
proposed prediction
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Real Escorting Results
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e Successfully escorted at three different walking speeds

Univesity of Virginia
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= = jdeal robot position
real escorting
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Escorting Simulation Results

Outline
e Position error of the robot reduced by 50% the conventional
Recursive techniques
Bayesian ] . o ]
Estimation and e A failure rate to 2.9%, a significant reduction from 21.0%
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