Autonomous Platooning of General Connected Vehicles Using Bayesian Receding Horizon Control

Gilchrist Johnson¹, Tomonari Furukawa¹ and B. Brian Park² ¹VICTOR Lab ²Department of Environment and Systems Engineering University of Virginia

Autonomous Platooning and Autonomous Following

Benefits of autonomous platooning

- Reduction of drivers;
- Reduction of traffic accident;
- Reduction of traffic jam;
- Emission of CO₂.

Autonomous platooning

- Autonomous driving (leader vehicle)
 - Autonomy fails at some point.
 - Applies to only leader vehicle.
- Autonomous following (follower vehicles)
 - Easier task
 - Applies to all following vehicles.

Past Work on Autonomous Following

- Autonomous following on public roads [Assidiq, et al, 2008]
 - Lane detection
 - Distance minimization in confined space
- Multi-robot cooperation with communication
 - Formation control: Centralized
 - Leader-follower approach: Autonomous following
 - Path planning [Madhevan, et al, 2013]
 - Trajectory planning [Gasparetto, et al, 2015]
 - Replanning with communication [Wu, et al, 2018]

Autonomous following with communication

Autonomous following with communication has been proposed only with an autonomous leader vehicle.

- Develop an autonomous following technique with communication when a leader vehicle is manually driven;
- Demonstrate and validate the efficacy of the proposed technique.

Outline

- 1. Recursive Bayesian Estimation and Receding Horizon Control
- 2. Proposed autonomous following
- 3. Experimental validation
- 4. Conclusions and future work

Motion and Sensor Models of Leader and Follower Vehicles

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Motion Models

Leader vehicle: Control is unknown

 $\mathbf{x}_{k}^{l} = \mathbf{f}^{l}\left(\mathbf{x}_{k-1}^{l}, \mathbf{w}_{k}^{l}
ight)$

Follower vehicle: Control is autonomous

 $\mathbf{x}_k^f = \mathbf{f}^f\left(\mathbf{x}_{k-1}^f, \mathbf{u}_k^f, \mathbf{w}_k^f
ight)$

Sensor Model Sensor on follower vehicle

 ${}^{f}\mathbf{z}_{k}^{l} = {}^{f}\mathbf{h}^{l}\left(\mathbf{x}^{l},\mathbf{x}_{k}^{f},{}^{f}\mathbf{v}_{k}^{l}
ight)$

k: Time step l: Leader vehicle f: Follower vehicle $\mathbf{X}_{k}^{(\cdot)}$: State $\mathbf{U}_{k}^{(\cdot)}$: Control $\mathbf{W}_{k}^{(\cdot)}$: Motion noise $f \mathbf{Z}_{k}^{l}$: Observation of l by f $f \mathbf{V}_{k}^{l}$: Observation noise

The leader's state may be observable, but its intention may not be unknown.

Recursive Bayesian Estimation

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

V

Conventional Autonomous Following

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

$$\begin{array}{ll} \textbf{Observation based} & J\left(l\left(\mathbf{x}_{k}^{l}|^{f}\tilde{\mathbf{z}}_{k}^{l},\tilde{\mathbf{x}}_{k}^{f}\right)\right) \\ &= \left\|\mathbf{g}\left(l\left(\mathbf{x}_{k}^{l}|^{f}\tilde{\mathbf{z}}_{k}^{l},\tilde{\mathbf{x}}_{k}^{f}\right)\right) - \left(\mathbf{x}_{k+1}^{f} + \mathbf{d}_{k}\right)\right\|_{2} \rightarrow \min_{\mathbf{u}_{k+1}^{f}} \\ & \text{where} \quad \mathbf{x}_{k+1}^{f} = \mathbf{f}^{f}\left(\tilde{\mathbf{x}}_{k}^{f},\mathbf{u}_{k+1}^{f},\tilde{\mathbf{w}}_{k+1}^{f}\right) \end{array}$$

wher

$$J\left(p\left(\mathbf{x}_{k+n_{c}}^{l}|^{f}\tilde{\mathbf{z}}_{1:k}^{l},\tilde{\mathbf{x}}_{1:k}^{f}\right)\right)$$

= $\left\|\mathbf{g}\left(p\left(\mathbf{x}_{k+n_{c}}^{l}|^{f}\tilde{\mathbf{z}}_{1:k}^{l},\tilde{\mathbf{x}}_{1:k}^{f}\right)\right) - \left(\tilde{\mathbf{x}}_{k+n_{c}}^{f} + \mathbf{d}_{k}\right)\right\|_{2} \rightarrow \min_{\mathbf{u}_{k+1:k+n_{c}}^{f}}$

here
$$p\left(\mathbf{x}_{k+\kappa}^{l}|^{f}\tilde{\mathbf{z}}_{1:k}^{l},\tilde{\mathbf{x}}_{1:k}^{f}\right) = \int_{\mathcal{X}^{l}} p\left(\mathbf{x}_{k+\kappa}^{l}|\mathbf{x}_{k+\kappa-1}^{l}\right) p\left(\mathbf{x}_{k+\kappa-1}^{l}|^{f}\tilde{\mathbf{z}}_{1:k}^{l},\tilde{\mathbf{x}}_{1:k}^{f}\right) d\mathbf{x}_{k}^{l},$$
$$\mathbf{x}_{k+\kappa}^{f} = \mathbf{f}^{f}\left(\tilde{\mathbf{x}}_{k+\kappa-1}^{f},\mathbf{u}_{k+\kappa}^{f},\tilde{\mathbf{w}}_{k+\kappa}^{f}\right) \quad \forall \kappa \in \{1,...,n_{c}\}$$

Following is determined only from the leader's state.

4/27/2024

Non-Gaussian Prediction with Gaussian Sensor Fusion

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

More accurate than EKF 1. Prediction by particle filter Without control $\mathbf{x}_{k+\kappa+1}^{\alpha,i} = \mathbf{f}^{\alpha} \left(\mathbf{x}_{k+\kappa}^{\alpha,i}, \mathbf{w}_{k}^{\alpha,i} \right),$ With control $\mathbf{x}_{k+\kappa,i}^{\beta} = \mathbf{f}^{\beta} \left(\mathbf{x}_{k+\kappa-1}^{\beta,i}, \mathbf{u}_{k\to n_{p}}^{\beta,i}, \mathbf{w}_{k}^{\beta,i} \right),$ 2. Gaussian approximation Valid as noise is Gaussian $\overline{\mathbf{x}}_{k+n_k}^{t(\cdot)} = \frac{1}{N} \sum_{k+n_k}^{N} \mathbf{x}_{k+n_k}^{t(\cdot),i}$ $\boldsymbol{\Sigma}_{k+n_k}^{t(\cdot)} = \frac{1}{N} \sum_{k+n_k}^{N} \left(\mathbf{x}_{k+n_k}^{t(\cdot),i} - \overline{\mathbf{x}}_{k+n_k}^{t(\cdot)} \right) \left(\mathbf{x}_{k+n_k}^{t(\cdot),i} - \overline{\mathbf{x}}_{k+n_k}^{t(\cdot)} \right)^T$ Gaussian sensor fusion 3. Gaussian approximation $\overline{\mathbf{x}}_{k+n_k}^t = \frac{\boldsymbol{\Sigma}_{k+n_k}^{tn}}{\boldsymbol{\Sigma}_{k+n_k}^{tn} + \boldsymbol{\Sigma}_{k+n_k}^{th}} \overline{\mathbf{x}}_{k+n_k}^{tn} + \frac{\boldsymbol{\Sigma}_{k+n_k}^{tn}}{\boldsymbol{\Sigma}_{k+n_k}^{tn} + \boldsymbol{\Sigma}_{k+n_k}^{th}} \overline{\mathbf{x}}_{k+n_k}^{th}$

Experimental Platform

Outline

Recursive Bayesian Estimation and **Receding Horizon** Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Club Car golf cart

Parameters of autonomous follower

Parameter	Value
L	1.2 [m]
\bar{v}_k^l	8.5 [m/s]
\widetilde{d}	4 [m]
$\Sigma_k^{l,u}$	[0.1, 0, 0, 0.087] [,m,m,m]
$\bar{\mathbf{w}}_k^{\alpha}$	[0.5, 0.5] [m,m]
$\Sigma_k^{lpha,w}$	[0.05, 0, 0, 0.017] [m,m,m,m]
$ar{\mathbf{w}}_{m{k}}^{m{eta}}$	[0.5, 0.5] [m,m]
$\Sigma_k^{eta,w}$	[0.5, 0, 0, 0.087] [m,m,m,m]
\tilde{N}	1000

Proposed Prediction vs. Conventional Prediction

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous Following by Proposed and Conventional				
Outline				
Recursive Bayes Estimation and Receding Horize Control	ian n			
Proposed autonomous following				
Experimental validation				
Conclusions and future work				
4/27/2024		Univesity of Virginia		12

Quantitative Results

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

4/27/2024

Experimental Validation

Outline
Outline
Recursive Bayesian
Estimation and
Estimation and
Receding Horizon
Control
control
Droposod
Proposed
autonomous
following
lonowing
The second second second
Experimental
validation
Conclusions and
future work

Conclusions and Future Work

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Conclusions

- Incorporation of vehicle connection;
- Fusion of non-holonomic motion and driver's intention
- Experimental validation of effect of incorporation of human intention and its uncertainty
 Future work
- Validation with real golf carts
- Incorporation of obstacle and collision avoidance

Acknowledgments to

Members of VICTOR Lab

Tomonari Furukawa tomonari@virginia.edu

Robotic Escorting

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

Robotic escorting needs

Difficulty of escorting compared to tracking

[Conte&Furukawa, ICRA, 2021] [Conte&Furukawa, JFR, 2021]

Rationale

Positional adjustment of escorting (front following) is much more than tracking (following from behind).

Distance to adjust

Track	$\Delta d_{k,k+1}^{\text{tra}} = 2(D-l)\sqrt{1 - \cos(\theta^{t,\max})}$
Escort	$\Delta d_{k,k+1}^{\text{esc}} = 2(D+l)\sqrt{1 - \cos(\theta^{t,\max})}$

$$\Delta d_{k,k+1}^{\text{esc}} > \Delta d_{k,k+1}^{\text{tra}}, \forall l > 0 \& ||\theta^{t,\max}|| \le \pi/2$$

4/27/2024

We Look Where We Walk

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

[Lopez et al., 2019]

Incorporation of Intention for Human Pose Prediction

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

• **Conventional prediction** based on observation of human non-holonomic motion

$$\mathbf{x}_{k+1}^{t} = \mathbf{f}^{n} \left(\mathbf{x}_{k}^{t}, \mathbf{w}_{k+1}^{t} \right)$$
$$\rightarrow \mathbf{x}_{k+n_{k}}^{t} = \mathbf{f}^{n} \left(\mathbf{x}_{k+n_{k}-1}^{t}, \mathbf{w}_{k+n_{k}}^{t} \right)$$

Additional prediction using "intention predictor"
 with head pose
 Intention

$$\mathbf{u}_{k+1\to n_k}^t = \mathbf{g}\left(\mathbf{x}_k^t, \mathbf{x}_k^i, \mathbf{w}_k^i\right)$$
$$\mathbf{x}_{k+1}^t = \mathbf{f}^h\left(\mathbf{x}_k^t, \mathbf{u}_{k+1\to n_k}^t, \mathbf{w}_{k+1}^t\right)$$
$$\rightarrow \mathbf{x}_{k+n_k}^t = \mathbf{f}^h\left(\mathbf{x}_{k+n_k-1}^t, \mathbf{u}_{k+1\to n_k}^t, \mathbf{w}_{k+n_k}^t\right)$$

[Conte & Furukawa, ICRA, 2021]

Escorting Simulation Results

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

• Comparing proposed method to existing techniques for a single walk path

Real Escorting Results

Outline

Recursive Bayesian Estimation and Receding Horizon Control

ullet

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

Successfully escorted at three different walking speeds

Escorting Simulation Results

Outline

Recursive Bayesian Estimation and Receding Horizon Control

Proposed autonomous following

Experimental validation

Conclusions and future work

Autonomous robotic escorting

- Position error of the robot reduced by 50% the conventional techniques
- A failure rate to 2.9%, a significant reduction from 21.0%

