Smart Urban Solutions; Alleviating Traffic Congestion with Innovations in the Detection and Localization of Free Street Parking
Spaces through Artificial Intelligence and Motion Estimation

Tala Bazzaza
tbazzaza@ece.ubc.ca
Electrical \& Computer Engineering
University of British Columbia

About me

- Completed my M.A.Sc degree in Electrical and Computer Engineering at the University of British Columbia (UBC) in Vancouver, Canada.
- Currently, I hold the position of Scientific Engineer at UBC, where I oversee
 research initiatives at the Digital Multimedia Lab and provides supervision to a significant cohort of graduate students.
- My research interests lie in the dynamic field of Artificial Intelligence, with a specific focus on advancing Video Driven Information Applications. My contributions extend across various domains, including Smart Cities, Intelligent Transportation, Digital Health, and Entertainment.

Traffic Congestion

FIt is estimated that $30-50 \%$ of traffic congestion is caused by drivers searching for parking spots during peak hours in metropolitan cities

Our Objective

- Automatic detection and recognition of street parking
- Notify drivers of available parking spaces ahead, thus significantly alleviating traffic congestion

Previous Work - Detection of Street Parking Spaces

- Several methods rely on aerial views of street parking spots captured by surveillance cameras
- Limited detection area due to obstructions caused by trees
- Cannot clearly identify spaces between parked cars

- Impractical solutions

Holistic Approach

 cars within a radius of $3-4 \mathrm{~km}$

Available parking shown in navigation screen

Labeling is Everything!

A simple but naïve approach

A parking spot behind a parked car

One parking spot

Another parking spot

Parking Spot: empty space as one spot!

Labeling is Everything!

We want to identify all free parking spaces

Labeling is Everything!

Scenario 1:
Single parking spot behind a parked car
x, y coordinates: size of the parking spot.
Red line demonstrates the size of the parking spot being 6 meters

Case 1:
Single parking spot behind a parked car

Labeling is Everything!

Labeling is Everything!

Labeling is Everything!

Scenario 1:
Single parking spot behind a parked car

Scenario 2:
More than one empty parking spot in a frame

Scenario 3:
Parking spot in a frame is between two parked vehicles

Labeling is Everything!

Scenario 1
Single parking spot behind a parked car

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	$\mathbf{m A P} @$ $\mathbf{0 . 5}$	Precision	Recall	F1 Score
YOLOv4	83.3%	0.84	0.81	0.82
SWIN	81.6%	0.81	0.74	0.77
YOLOv7	85.5%	0.89	0.77	0.83
YOLOv7-x	90.9%	0.92	0.82	0.87

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	mAP @ $\mathbf{0 . 5}$	Precision	Recall	F1 Score
YOLOv4	$\mathbf{8 3 . 3 \%}$	0.84	0.81	0.82
SWIN	$\mathbf{8 1 . 6 \%}$	0.81	0.74	0.77
YOLOv7	$\mathbf{8 5 . 5 \%}$	0.89	0.77	0.83
YOLOv7-x	$\mathbf{9 0 . 9 \%}$	0.92	0.82	0.87

mAP:
Mean
Average
Precision

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	mAP @ $\mathbf{0 . 5}$	Precision	Recall	F1 Score
YOLOv4	$\mathbf{8 3 . 3 \%}$	0.84	0.81	0.82
SWIN	$\mathbf{8 1 . 6 \%}$	0.81	0.74	0.77
YOLOv7	$\mathbf{8 5 . 5 \%}$	0.89	0.77	0.83
YOLOv7-x	$\mathbf{9 0 . 9 \%}$	0.92	0.82	0.87

mAP:
Mean
Average
Precision

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	mAP @ 0.5	Precision	Recall	F1 Score
YOLOv4	83.3%	0.84	0.81	0.82
SWIN	81.6%	0.81	0.74	0.77
YOLOv7	85.5%	0.89	0.77	0.83
YOLOv7-x	90.9%	0.92	0.82	0.87

$$
\begin{aligned}
& \text { Recall }=\frac{\text { True Positives }}{\text { True Positives }+ \text { False Negatives }} \\
& \text { Precision }=\frac{\text { True Positives }}{\text { True Positives }+ \text { False Positives }}
\end{aligned}
$$

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	mAP @ 0.5	Precision	Recall	F1 Score
YOLOv4	83.3%	0.84	0.81	$\boldsymbol{0 . 8 2}$
SWIN	81.6%	0.81	0.74	$\boldsymbol{0 . 7 7}$
YOLOv7	85.5%	0.89	0.77	$\boldsymbol{0 . 8 3}$
YOLOv7-x	90.9%	0.92	0.82	$\boldsymbol{0 . 8 7}$

F1 score:

Measures precisely the network's ability to avoid misclassifying non-vacant spots and ensure that no free parking spaces are missed

Choosing a Network

We tested 4 different networks: YOLOv4, Swin, YOLOv7 and YOLOv7-x

TESTING RESULTS OF THE NETWORKS

Model	mAP @ 0.5	Precision	Recall	F1 Score
YOLOv4	83.3%	0.84	0.81	0.82
SWIN	81.6%	0.81	0.74	$\mathbf{0 . 7 7}$
YOLOv7	85.5%	0.89	0.77	0.83
YOLOv7-x	90.9%	0.92	0.82	0.87

F1 score:

Measures precisely the network's ability to avoid misclassifying non-vacant spots and ensure that no free parking spaces are missed

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

Motion Vectors

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{\mathrm{N}} s_{i}}
$$

Motion Vectors showing car movement

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

Global vector

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

- Not all blocks in a frame are important and useful in calculating global motion

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

- Not all blocks in a frame are important and useful in calculating global motion

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

- Not all blocks in a frame are important and useful in calculating global motion

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

- Not all blocks in a frame are important and useful in calculating global motion

Accurate Measurement of Parking Space

- We base our approach on the global motion vector for each frame:

$$
\mathrm{GMV}=\frac{\sum_{i=1}^{N} s_{i} m v_{i}}{\sum_{i=1}^{N} s_{i}}
$$

- Not all blocks in a frame are important and useful in calculating global motion

Accurate Measurement of Parking Space

Motion vectors of blocks used for global estimation in blue

Accurate Measurement of Parking Space

Motion vectors of blocks used for global estimation in blue

This will give us distance in pixels!

Translating MV (pixels) into distance (meters)

Translating MV (pixels) into distance (meters)

Recorded different video sequences while driving across these cones at various speeds ranging from 5 to $50 \mathrm{~km} / \mathrm{h}$.

[^0]
Translating MV (pixels) into distance (meters)

Cones placed at distances of 0.5 meters

Recorded different video sequences while driving across these cones at various speeds ranging from 5 to $50 \mathrm{~km} / \mathrm{h}$.

THE CORRELATION BETWEEN SPEED AND GLOBAL MOTION

Speed	Global Vector
5	9.5
6	9.9
9	17.1
10	14.4
12	21.1
14	26.2
22	35.8
24	43.7
29	46
30	56.9
37	65.9
47	70.8
51	103.4

Translating MV (pixels) into distance (meters)

Cones placed at distances of 0.5 meters

Linear relationship between speed and global vector

Translating MV (pixels) into distance (meters)

Cones placed at distances of 0.5 meters

Linear relationship between speed and global vector

$$
\text { Now we can compute the number of meters the car moved per frame: } \quad d_{m}=\frac{1}{\frac{30 \text { frames }}{\text { second }} \frac{\text { second }}{\text { meter }}}
$$

Experimental Results

- Accuracy of measuring parking size: 91.4%

Speed (km/h)	Ground Truth Distance (meters)	Accumulated Distance using Motion (meters)	Accuracy (\%)
5	11.5	13.2	85.22
6	11.5	13.1	86.09
9	11.5	12.9	87.83
10	11.5	12.4	92.17
12	11.5	10.9	94.78
14	11.5	11.9	96.52
22	11.5	12.1	94.78
24	11.5	10.2	88.70
29	11.5	10.9	94.78
30	11.5	12.4	92.17
37	11.5	11.7	98.26
47	11.5	10.2	88.70
51	11.5	12.9	87.83
			Average: 91.4%

Experimental Results

- Accuracy of measuring parking size: 91.4%

Speed (km/h)	Ground Truth Distance (meters)	Accumulated Distance using Motion (meters)	Accuracy (\%)
5	11.5	13.2	85.22
6	11.5	13.1	86.09
9	11.5	12.9	87.83
10	11.5	12.4	92.17
12	11.5	10.9	94.78
14	11.5	11.9	96.52
22	11.5	12.1	94.78
24	11.5	10.2	88.70
29	11.5	10.9	94.78
30	11.5	12.4	92.17
37	11.5	11.7	98.26
47	11.5	10.2	88.70
51	11.5	12.9	87.83
			Average: 91.4\%

- Overall accuracy of detecting available street parking space: 87.5\%

Combining Parking Detection with Parking Sign Recognition

Detecting Parking Signs on a Test Video

Parking Sign Detection \& Identification Pipeline

A video frame captured by car camera in the streets.

Cropping signs larger than 60X40

The cropped sign

Comparing the sign with the reference database using triplet
loss.
Parking sign detection and identification pipline.

Parking Sign Detection \& Identification Pipeline

Training Phase

Parking Sign Detection \& Identification Pipeline

A video frame captured by car camera in the streets.

The reference dataset should have all the parking signs that can be found in Vancouver

The sign is detected in the frame.

Comparing the sign
with the reference database using triplet loss.

Parking sign detection and identification pipline.

Parking Sign Detection \& Identification Pipeline

A video frame captured by car camera in the streets.

It should also include different view angles and visual quality for best matching

The sign is detected in the frame.

Changing the resolution to 96X96, applying standardization

Comparing the sign
with the reference database using triplet loss.

Parking sign detection and identification pipline.

Parking Sign Detection \& Identification Pipeline

A video frame captured by car camera in the streets.

Reference database

 contains43 classes
116 sample images

The sign is detected in the frame

Comparing the sign
with the reference database using triplet loss.

Parking sign detection and identification pipline.

Parking Sign Detection \& Identification Pipeline

A video frame captured by car camera

Name of the sign presented in the reference dataset	Similarity Scores
No stopping before the sign	6.63
No parking before the sign	6.43
No stopping on both sides	6.12
\ldots	\ldots

81\%

The sign is detected in the frame.

Parking sign detection and identification pipline.

Cropping signs larger than 60X40

The cropped sign.

"n" consecutive frames showing the same sign captured by a car camera

Detected signs in the frames.

Cropped signs.

" n " consecutive frames showing the same sign captured by a car camera

Compare signs with the reference dataset using triplet loss.

" n " consecutive frames showing the same sign captured by a car camera

Detected signs in the frames.

Compare signs with the reference dataset using triplet loss.

Name of the sign presented in the reference dataset	Accumulated Similarity Scores (116)
Time-limited no stopping On the right side	5.33 (highest score)
Time limited no parking on the tight side	5.1
No stopping on the right side	4.96
\ldots	\ldots
\ldots	\ldots
	85%

" n " consecutive frames showing the same sign captured by a car camera

88\%

Compare signs with the reference dataset using triplet loss.

Name of the sign presented in the reference dataset	Accumulated Similarity Scores (116)
Time-limited no stopping On the right side	5.33 (highest score)
Time limited no parking on the tight side	5.1
No stopping on the right side	4.96
\ldots	\ldots
\ldots	\ldots

Sign Identification: Text Detection

- We used MMOCR framework for text
 detection

Thank you!!

tbazzaza@ece.ubc.ca

[^0]: Cones placed at distances of 0.5 meters

