CAST

Mariam Arutunian
Matevos Mehrabyan
Sevak Sargsyan
Hayk Aslanyan

Precise Code
Fragment Clone
Detection

VALID 2024
to October

CAST

About us

Center of Advanced Software
Technologies, Armenia

= Members (~50 and growing)
m Research and development, research projects with leading
companies
m Publications (40+, Scopus, Web of Science)
o Program analysis, software security
o NLP, ECG, medical data analysis
o Autonomous systems and robotics
m Education

Motivation

|ldentifying copied code fragments is vital for software

m Management
m Maintenance
m Security

Applications

m Software plagiarism detection
m Malware detection and classification

m Finding known vulnerabilities and avoiding bug propagation

Facts

Studies show that

= About 20% of code is duplicated in software packages [1]
e Copy-Paste
e Compiler optimizations like inlining, transformations.
s Over 96% of commercial software packages incorporate open-source code
[2]
= 7,800 open-source projects has shown that 44% of them have at least one
pair of identical code fragments [3]

Source Code Clones

Original

float sum = 0.0;
for (inti=0; i<n; i++) {
sum = sum + F[il;

}

float sum = 0.0; // Comment
for (inti=0; i<n; i++) {
____sum =sum + FIiJ;

}

s Comments
m Whitespaces

int sum1 = 0; [/ Comment
for (inti=0; i<n; i++) {
—__suml = suml + F[i];

}

= Includes Type 1
m Identifiers

m Literals

m Types

int prod = 1; /| Comment
for (inti=0;i<n; i++) {
___prod = prod * F[il;

}

= Includes Type 2

m Instructions addition

m Instructions deletion

m instructions modification

}

int factorial_rec (int n) {

if (n<=1){

}
}

return 1;
else {
return n * factorial_rec (n - 1);

The same calculation, but
uses different instructions

Binary Code Clones

Original

mov [ebp+var_1], 5
mov eax, [ebp+var_]]
iadd eax, [ebp+var_4]

BinType 1

mov [ebp+var_l1], 5
mov eax, [ebp+var_]]
iadd eax, [ebp+var_4]

m Identical

BinType 2

mov [ebp+var_1], 10
mov ecx, [ebp+var_1]
iadd ecx, [ebp+var_4]

Includes Type 1
Registers
Literals
Operand size

ey elsp a1

BinType 3

mov ecx, [ebp+var_1]
jadd ecx, [ebp+var_4]

Includes Type 2
Instructions addition
Instructions deletion
instructions modification

f

BinType 4

actorial_O3:
movl $1, %eax
cmpl $1, %edi
jle .L
.p2align 4,,10
.p2align 3

L2:
movl %edi, %edx
subl $1, %edi
imull %edx, %eax
cmpl $1, %edi
jne L2

LI
ret

The same calculation, but
uses different instructions

Problem Description

Despite the variety of code clone detection methods and tools:

01 Only few can detect clones of fragments rather than whole functions

02 There is no unified approach: either source or binary code clone detection

Code Clone Detection Techniques
Text-based

m Two code fragments are compared in the form of

text/strings

m Finds Type 1 clones

Token-based

The entire code is transformed into a sequence of
tokens

More robust against code changes than the text-based
techniques

Finds Type 1 and Type 2 clones

Metrics-based

m Different types of metrics are calculated for

code fragments usually on some graph
representation, such as AST or PDG.

Suffers in precision and produces many false
positives

Tree-based

Uses parse trees or AST of the analyzable code

Tree matching algorithm for similar subtree detection
Finds Type 1, Type 2 and Type 3 clones

Low precision for Type 3 clones detection

Graph-based

Maximal isomorphic or similar subgraphs are
searched on PDGs or CFGs

Are robust to the insertion and deletion of code,
reordered instructions, intertwined and
non-contiguous code.

Machine learning-based

The focus is on training models to classify or
cluster similar code fragments

Needs a large dataset containing similar and
dissimilar examples of codes

Finds Type 1, Type 2, Type 3, Type 4 clones,

Architecture of The Method

Fragment

Project

Y

Fragment’'s PDG

-

.| Project functions’
PDGs

Similarity
Percentage

2. PDGs’ matching

Initial
vertices

.

~

Temporarily i
tching vertices .

o

Checking for
compatibility

Detected
Clones

4

Architecture of The Method

Fragment

1. PDG construction

Project

Y

Fragment’'s PDG

L

.| Project functions’

-

PDGs

Similarity
Percentage

2. PDGs’ matching

Initial
vertices

.

~

Temporarily i
tching vertices .

o

Checking for
compatibility

Detected
Clones

4

Program Dependency Graph

Program Dependency Graph (PDG) is a directed graph where

m Vertices are instructions of Intermediate Representation (IR)
m Edges are data and control dependencies between instructions

[instruction_]] Control dependency
—— Data dependency
[instruction_2]
[instruction_3] [instruction_5]
I //\\
[instruction_4] [instruction_6] [instruction_7

[\//]

instruction_6

PDG construction

PDGs are constructed

m For all functions of the project to analyze
m For the code fragment

Project’s PDGs

function_] function_2 function_N

Fragment’'s PDGs

Fragment's
instructions

instruction_b5

//\\

instruction_6 instruction_7 |

\,,//

instruction_6

Architecture of The Method

Fragment

Project

Y

Fragment’'s PDG

.| Project functions’

PDGs

Similarity
Percentage

2. PDGs’ matching

Initial
vertices

Temporarily
matching vertices

Checking for
compatibility

|

Detected
Clones

Graphs’ Matching

Matching algorithm has two main phases:

m Construction of the set of initial matched vertex pairs
m lterative expansion of matched vertex pairs

Function’s PDG
Fragment’s PDG

Graphs’ Matching

Matching algorithm has two main phases:

m Construction of the set of initial matched vertex pairs
m lterative expansion of matched vertex pairs

Function’s PDG
Fragment’s PDG

Graphs’ Matching

Matching algorithm has two main phases:

m Construction of the set of initial matched vertex pairs
m lterative expansion of matched vertex pairs

Function’s PDG
Fragment’'s PDG

Graphs’ Matching

Matching algorithm has two main phases:

m Construction of the set of initial matched vertex pairs
m lterative expansion of matched vertex pairs

Function’s PDG
Fragment’'s PDG

Graphs’ Matching

Matching algorithm has two main phases:

Construction of the set of initial matched vertex pairs
Iterative expansion of matched vertex pairs

Function’s PDG
Fragment’'s PDG

matched common vertices count
similarity = * 100%
fragment PDG’s vertices count

Graphs’ Matching - Initial Vertices Selection

Based on experimental evaluation, the following subroutines were
chosen for initial vertices pair selection:

01 All vertices (v,v*) with no incoming edges in both PDGs, where v € fragment_PDG,
v* &€ function_PDG

02 All vertices (v, v*), where v € fragment_PDG and |pred_ctrl(v)| is the maximum. v* €
function_PDG and |pred_ctrl(v*)| 2 |pred_ctrl(v)|

03 All vertices (v, v¥*), where v € fragment_PDG and pred_data(v) is the maximum. v* €
function_PDG and pred_data(v*) > pred_data(v)

Graphs’ Matching

. . . 2. PDGs’" matching
1. Temporarily matching vertices

o Five subroutines. Initial
2. Checking for compatibility vertices
o The temporarily matched pairs are /\
checked against two conditions and

some of them may be filtered out. [Temporarily L_ . j Checking for }

matching vertices compatibility

The matching process is complete when no
new pairs of vertices are temporarily matched

Temporarily Matching Subroutines

m Based on incoming and outgoing control flow

B Based on basic block

B Based on predecessor and successor basic blocks
B Based on incoming and outgoing data flow

B Based on initial_pairs

Temporarily Matching Subroutines

Temporarily matching is allow for two vertices (u, u*):

01 opcode(u) == opcode(u*)

02 |pred_ctri(u)| == [pred_ctrl(u*)|
03 [succ_ctrl(u)| == |succ_ctrl(u*)|
04 (u,u*) € matched_pairs

05 (u, u*) ¢ incompatible_pairs

#1 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:

m (u u*), where u € pred_ctrl(v), u* € pred_ctrl(v*), TMP_MATCH_ALLOWED((u, u*)) == true

m (s, s*), wheres € succ_ctrl(v), s* € succ_ctrl(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG

Control dependency

Fragment PDG

——— Data dependency

- Matched
:] Temporarily matched

#1 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:

m (u u*), where u € pred_ctrl(v), u* € pred_ctrl(v*), TMP_MATCH_ALLOWED((u, u*)) == true

m (s, s*), wheres € succ_ctrl(v), s* € succ_ctrl(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG

Control dependency

Fragment PDG

——— Data dependency

- Matched
:] Temporarily matched

#2 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:

m (u, u*), whereu € bb(v), u* € bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

Function’s Basic Block
- Matched

Fragment’s Basic Block
I (] Temporarily matched

#2 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:

m (u, u*), whereu € bb(v), u* € bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

Function’s Basic Block
- Matched

Fragment’s Basic Block
I (] Temporarily matched

#3 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:
= (u, u*), where u € pred bb(v), u* € pred bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true
m (s, s*) wheres € succ_bb(v), s* € succ_bb(v*), TMP_MATCH_ALLOWED((s, s*)) == true

- Matched
:] Temporarily matched

—_

BN

#3 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:
= (u, u*), where u € pred bb(v), u* € pred bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true
m (s, s*) wheres € succ_bb(v), s* € succ_bb(v*), TMP_MATCH_ALLOWED((s, s*)) == true

- Matched
:] Temporarily matched

—_

EQN

#4 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:
m (u, u*), where u € pred data(v), u* € pred _data(v*), TMP_MATCH_ALLOWED((u, u*)) == true
m (s s*) wheres € succ_data(v), s* € succ_data(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG

Control dependency

Fragment PDG

——— Data dependency

- Matched
:] Temporarily matched

#4 Temporarily Matching Subroutine

For each pair (v, v¥) € matched_pairs, temporarily match vertices:
m (u, u*), where u € pred data(v), u* € pred _data(v*), TMP_MATCH_ALLOWED((u, u*)) == true
m (s s*) wheres € succ_data(v), s* € succ_data(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG

Control dependency

Fragment PDG

——— Data dependency

- Matched
:] Temporarily matched

#5 Temporarily Matching Subroutine

Temporarily match vertices (u, u*) € initial pairs, (u, u*) ¢ matched_pairs, (u, u*) & incompatible_pairs

Function's initial vertices : [v8, v14, v98]

Fragment's initial vertices : [u4, u72]

#5 Temporarily Matching Subroutine

Temporarily match vertices (u, u*) € initial pairs, (u, u*) ¢ matched_pairs, (u, u*) & incompatible_pairs

Function's initial vertices : [, v14, v98]

Fragment's initial vertices : [, u72]

Checking for Compatibility

Matched pairs

Temporarily

matched pairs Snee

o1 pred_condition(v, v*) fails if:

dp € pred_ctrl(v), (p, p*) € matched_pairs, fip* € pred_ctrl(v*),

02 succ_condition(v, v*) fails if:

ds € succ_ctrl(v), (s, s*) € matched_pairs, fis* € succ_ctrl(v*),

Implementation

Used Intermediate Representations

m Source Code - LLVM intermediate representation

m Binary Code - REIL intermediate representation

Testing System

The testing system creates PDGs of real-world projects, duplicates each PDG, removes
some vertices from it and considers the original one as a fragment.

m It randomly selects a basic block and removes it vertices until the desired percentage is
reached

m If the desired percentage wasn’t reached by removing all vertices of the basic block,
another random basic block is selected for vertices removal.

m Predecessor vertices of the removed vertices are connected to their successor vertices.

m Testing was done for 100%, 90%, 80%, and 70% similarity clones.

Source Code Clones Evaluation

Project C/ C;;::de Precision Recall RMSE FCD speed
c-ares 1.15.0 61087 97.5 95.2 6.1 29s
jasper 1.900.1 28279 95.4 93 6 15s
openssl 1.0.2t 310922 97 95.1 7.7 2s
rsync 3.1.3 44832 Q6 Q1.9 10.7 26s

Binary Code Clones Evaluation (1)

Project S'Ee. SIHE Architecture Precision FCD speed
inary

libcares 2.3.0 .

(c-ares 115.0) 86 KiB x86-64 98.9 95.6 4.6 41s

libcares 2.3.0 .

(c-ares 115.0) 96 KiB x86 97.9 93.4 5.5 43s

libcares 2.3.0 .

(cratesii5i0) 146 KiB ARM 8.9 95.6 4.6 49s

jasper 1.900.1 1.5 MiB x86-64 96 92.1 5.4 3m 5s

jasper 1.900.1 368 KiB x86 95 90 6.5 2m 1s

jasper 1.900.1 478 KiB ARM 94.] 89.8 6.1 2m 8s

Binary Code Clones Evaluation (2)

Size of the

Project binary Architecture Precision FCD speed
openssl 1.0.2t 536 KiB x86-64 99.9 98.1 3.8 1m 10s
openssl 1.0.2t 507 KiB x86 8.8 95.8 3.9 Om 57s
openssl 1.0.2t 634 KiB ARM Q7.9 95.6 4.4 Im 25s
rsync 1.3.2 1.7 MiB x86-64 96 91 6.6 3m 34s
rsync 1.3.2 1.6 MiB x86 94.9 88.9 6.7 3m 21s
rsync 1.3.2 1.8 MiB ARM 94.] 88.8 7.4 3m 58s

Detected Clones of Existing CVEs

Found 14 bugs

7 of them are already accepted

2 of them are rejected as the maintainers use the projects as tests

Openly accessible discoveries

CMake - https://qitlab.kitware.com/cmake/cmake/-/issues/26112

OpenJPEG https://github.com/uclouvain/openjpeqg/issues/1539
PointCloudLibrary https://github.com/PointCloudLibrary/pcl/issues/6080
Oad https://bugs.debian.org/cqgi-bin/bugreport.cqgi?bug=1036970

ITK https://github.com/InsightSoftwareConsortium/ITK/issues/4777

Due to security concerns, 2 of our findings remain confidential.

https://gitlab.kitware.com/cmake/cmake/-/issues/26112
https://github.com/uclouvain/openjpeg/issues/1539
https://github.com/PointCloudLibrary/pcl/issues/6080
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1036970
https://github.com/InsightSoftwareConsortium/ITK/issues/4777

CAST

Do you have any questions?

hayk.aslanyan@rau.am
https://castech.am/

Thanks!

https://castech.am/

