

Smart Technologies
••••• research group

Real-Time Emotion Assessment System in Smart Classrooms Using Wearable Bracelets

Edgar Batista, Laia Cot,

Valeria Pérez, Antoni Martínez-Ballesté

antoni.martinez@urv.cat

Universitat Rovira i Virgili

12 K graduate students3.5 K postgraduate1.5 K PhD1.2 K professors

Smart Technologies ••••• research group

UNIVERSITAT ROVIRA I VIRGILI

TS PUBLICATIONS NEWS & MEDIA OP

smarttechresearch.com

In the Smart Technologies Research Group we apply Information and Communication Technologies (for example, devices within the Internet of Things, machine learning, privacy enhancing technologies or process mining) in a wide range of areas: from health and quality of life to intelligent transport, smart classrooms, assisted living environments, etc. The application scenarios range from context-aware environments to complex, cognitive systems. In addition, we also focus on network and data security in smart technologies as well as privacy and related ethical issues.

UNIVERSITAT ROVIRA I VIRGILI

Content

- Introduction: Smart Classrooms, learning and emotions
- Components and functionalities
- Development
- Testing
- Conclusions and future work

Smart classrooms

Smart classrooms

UNIVERSITAT ROVIRA I VIRGILI

A. Martínez-Ballesté, E. Batista, E. Figueroa, G. Fretes Torruella, C. Llurba, J. Quiles-Rodríguez, O. Unciti, and R. Palau, "A Proposal for the Smart Classroom Infrastructure using IoT and Artificial Intelligence", 48th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 109-114, Osaka, Japan, IEEE, 2024. ISBN: 979-8-3503-7696-8.

Smart classrooms

Antoni Martínez Ballesté - UBICOMM 2024 (Venice, Italy)

Pictures by the author and from freepik, other sources included for educational purposes only.

Learning and emotions

- Understanding emotions can foster a positive emotional climate
- in the classroom that results in improved academic performance.

Universitat Rovira i Virgili

hnologies earch group

Smal

 Affective states can be detected to track the overall mood of students and teachers.

The circumplex model of affect (Posner, Russell & Peterson, 2005)

https://en.wikipedia.org/wiki/Inside_Out_(2015_film)

Ekman's emotions

Learning and emotions

- Most proposals for detecting emotions rely on video analysis.
- Video-based solutions might be limited by lighting conditions, occlusions, or even individual differences in expressing emotions. Moreover, these require robust privacypreserving techniques.
- Video analysis alone **is not sufficient** to accurately detect the mood and engagement of students. **Alternative sources?**

Real-Time Emotion Assessment System in Smart Classrooms ...

Capturing physiological factors

echnologies esearch group

Smar

- Electrodermal Activity (EDA), Heart Rate Variability (HRV), skin temperature (SK) are related to emotions and stress.
- Bracelets are able to collect such data in real-time.
- Proprietary applications, off-line access to data, expensive products...

Empatica

So...

- V VIRGILI D • C
 - We present a first approach attempt to a real-time emotion assessment system for both students and teachers within smart classrooms.
 - Our proposal involves real-time data collection gathered from EmotiBit devices.
 - Capabilities to interact with other distributed systems within the smart classroom ecosystem.

Components

Functionalities

Bracelet operation

Bracelets discovery Bracelet assignment Start/stop monitoring

Classroom agent coordination

alive pseudonyms queryState queryData

• Proactive

Universitat Rovira i Virgili

echnologies esearch group

Smar

Emotion update Battery alert Database reduction

Functionalities

The Arousal-Valence Model of Emotions

UNIVERSITAT ROVIRA I VIRGILI

Antoni Martínez Ballesté - UBICOMM 2024 (Venice, Italy)

Development

EmotiBit sensor

- The gadget is open-source and, moreover, its cost is significantly lower compared to other products.
- Collects up to 16 physiological parameters.
- Bracelets connect to Wi-Fi and are controlled by the Oscilloscope software.

Development

 Oscilloscope can only capture data from a single EmotiBit... our goal is to process data from multiple devices.

- The prototype operates smoothly.
- Collecting all 16 values from a single EmotiBit per hour results 25 MB of data.
 - If only EDA, HR, and SKT are stored, the storage requirement decreases significantly to approximately 4 MB per hour.

Considering the application of EmotiBits in a typical primary school in Catalonia, where the average student-to-teacher ratio is 20 students per class and each student wears an EmotiBit device for 5 hours per day, the storage requirement for the entire class is around 0.4 GB per day.

- Battery life, operational modes
 - Normal mode, where the device operates at full capacity, using all its sensors and transmitting data wirelessly in real-time. Data are acquired at 15 Hz frequency.
 - Low-power mode with no transmission but storage on an SD card.

In normal mode, the device's battery lasts approximately 3.25 hours, which can be impractical for a typical school day.

Smart

- Emotion AI model:
 - Increase / decrease / evolution of physiological parameters.
 - Medical literature on stress and HRV, EDA and emotions...
 - Lack of training data (kids, valid for Machine Learning?)

Conclusions and future work

- **Feasibility:** We can develop an Emotion Detection Unit that gathers data in real time about emotions and can interact with other systems within the smart classroom.
- **Data volume:** Decrease data by storing them at a given frequency or only when significant changes occur. + Database reduction.
- **Battery life:** Optimise firmware to decrease frequency of data acquisition.
- **Security:** Data is nor encrypted or authenticated! We need to add an authentication layer between devices and controller.
- Training data: obtain feasible data in a controlled primary school setting.

Moltes gràcies!