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Introduction

Based off of Dijkzeul et al'. paper, ‘Painting with Evolutionary

Algorithms'.

e Uses plant propagation (PPA), simulated annealing (SA)
and hill climbing algorithms (HC)

e SA>HC>PPA

Why?
e Evolutionary nature of computational art
e Algorithmic behavior



To compare the performances of the different algorithms
by their performance in:

e« Mean squared error (MSE)
o Average brush stroke size
e Brush type frequency

N
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The research question is as follows:

How does the choice of brush types impact the performance and

runtime of evolutionary algorithms in generating paintings?

Brush type 1 Brush type 2 Brush type 3 Brush type 4







Seven different paintings:




e Hill climber (HC) algorithm

AMSE
P(accept) = e — (W)
e Simulated annealing (SA) algorithm ———— c
temp = .
log(i)

e Tabu search (TS) algorithm

o Makes use of a tabu list



e Calculating the MSE of the newly generated canvas on every evaluation
and comparing it to the previous one, only accepting a better error.

N
1 2
MSE - Ezlal(l) - 1)

MSE = 2948.67







e (Canvas specifications
o 240x180 pixels
o black background
o initialize a random canvas
Experiments with 3 and 4 brush types
1,000,000 evaluations per run (totalling 210,000,000 evaluations)
5 runs for every painting per algorithm (totalling 210 runs)
25 brush strokes
Brush stroke mutation on every evaluation

3 brush types 4 brush types




Colour
Shape
Size
Rotation
Position
Brush type
Index
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Simulated annealing uses the current evaluation number in its cooling
function, the higher the evaluation number the lower the probability of
accepting a worse solution.

Tabu search uses a tabu list of size 50.

Brush color using RGB color codes.

Brush size between 0.1 and 0.7.
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Metrics

e Average brush size
o Average size change over iterations
o Notable pattern: General increase except for Bach portrait

e Brush type frequency
O Expected baseline:
B 33.3% for 3-type experiment
B 25% for 4-type experiment
O Actual findings:
B 44-48% preference for type 2 in 3-type experiment
B 40-44% preference for type 3 in 4-type experiment
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Average
brush size

Average brush size

Average Brush Size - Three brush types

Average Brush Size - Four brush types
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Brush type
frequency

Frequency

Three brush types distribution

Four brush types distribution
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The ‘Bach Anomaly’ and its significance

e The only painting showing decreasing brush stroke sizes.
e Contradicts the pattern seen in all other paintings.
Potential explanations:

O

Role of the black background becoming more influential in sparse

settings.
Possible trade-off between detail preservation and background

coverage.
Questions about whether this is a general pattern for portraits with
dark backgrounds.
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Discussion

e Similar performance across all three algorithms (HC, SA, Tabu).
e Shiftin brush type preference when adding a fourth type.

e Technical implications:
o State space complexity (107284 possible states)
o Question of whether current parameters are optimal
o Possibility that sparse conditions create different optimization landscapes
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Future work

e Incorporate a genetic algorithm.

e Adding more brush types.

e Enable background color mutations.

e Fine-tuning parameters for the existing algorithms.
e Testing a larger number of evaluations.

e |nvestigating other artistic styles.
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Takeaways

e Deeper understanding of evolutionary optimization algorithms.
e |Importance of background in sparse compositions.
e The importance of parameter tuning.

e The impact that one feature could have on the performance of the

algorithms.
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Questions?




