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ABout ME

joined the ZJU-UIUC Institute as Associate Professor in January 2021. He
received his PhD degree in Wireless Communications from the University of Alberta in Canada,
and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,
from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow
of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In the past 25 years, he was involved in numerous industrial and academic collaborative
projects in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects
concerned mainly wireless and optical telecommunication networks, but also genetic regulatory
circuits, air transport services, and renewable energy systems. This experience allowed him to
truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing and importing methods from
Telecommunication Engineering and Computer Science to model and analyze systems more
efficiently and with greater information power.
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OBJECTIVE

— it involves data, models, experiments, and methods
— it answers questions such as “why” and “what if”
— it is becoming popular and included in university curricula

ToPiCcs

1. Causal associations
2. Experiment design

3. Structural causal models and
do-calculus

4. Causality in time-series




Pavel Loskot, ZJU-UIUC ©2024 3/38

FunNDAMENTAL OBSERVATIONS

UbSEI'VEitiDﬂ

STRUCTURE

the same thing

algorithms

e machine learning models represented by datasets
— input-&-output samples (=labeled data)
— input-or-output samples (=unlabeled data)

e experiments are natural data/signal/info processing systems

e evidence-based explainability is becoming a ubiquitous task

Causal learning

A causalit
CO NG I

\observations /

difficulty

Anticausal learning
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DATA AND SIGNAL PROCESSING

e unbiased and accurate
e sample and information efficient

e data already available or not?
— forward modeling
— reverse modeling
possible applications

e decide about the effect of [independent variable] on
[dependent variable]

e decide what causes change or variations in
observed response

e predict unobserved response if ... (counterfactuals)
e compare responses under different settings

available measurements constrain

e resources effective (effort, time)
e systematic, replicable, generalizable

—»{ measurements
\

application determines required
measurements

JUDEA PEARIL
S e o A 7
BOOK OF
WHY

- —— i

THE NEW ECIENCE
OF CAUSE AND EFFEGT
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AssocIATIONS AND CAUSALITY

e X and Y are correlated
e Z/ is confounder

Association

e X and Y are independent Direct Z

— <

s cause
conditioned on Z
— associations can be Y
accidental, spurious or conditional

e strong association is neither necessary nor sufficient for causality

X

Association

Confounding

Y

e weak association is neither necessary nor sufficient for absence of causality

X1y = oxy = 0 (uncorrelated)
1. pX,Y1Z2) = pX|Z)p(Y|Z) & XUY|Z
2. X1ULY,W|Z = X1UY|ZVv X1LUYIWZ
3. XAWUY|ZANXLULW|Y,Z = XU YW|Z
4, XUYIWZAXLWYZ = X1UYW|Z
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MecHANIsMs INFLUENCING CAusAL RELATIONSHIPS

P * Madictar varicable -

L

Independent variable ] Dependent variable

Moderator varioble

e caused by independent variable

e influences dependent variable

e can be full or partial

e increases correlations when taken into account

e constrains the relationship between variables
e defines conditions for the relationship to exist
e influences level, direction, or presence of the relationship
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MEASURING ASSOCIATIONS

1 o (xi—%\(yi—7 6 : 2
— =] -— rank_difference:
o Sl Var) o1y Lrenkterence

oxy =0 : X, Y uncorrelated
and also Gaussian = independent

PXy — PXzPYZ
JA=p2 )0 -p%)

— correlation between residuals of linear regression of X on Zand Y on Z

Pxyiz =

pxyiz=0 : X,Y partially uncorrelated given Z
pxyiz=0 =» XUY|Z
pxyiz=0 & XUY|Z
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COoRRELATIONS IN MuLTIPLE DIMENSIONS

e measuring correlations for more than two random variables

x| =1X1+Xo+---+Xy| (thisis not [;-norm ||x||; = | Xq|+ -+ |Xy])

m-th central sum-moment of random vector X € RY

N
Z(Xi - X))
i=1

m-th central sum-moment for L random processes with N; observations

m

ﬂm('Xll):E o m = 1a2a"'

L N "

Z Z(Xli .0

=1 i=1

(I Xyl +...+1 X)) =E
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StaTisTICAL DEPENDENCIES

Y="15 (constant) ‘
+51X1 +62Xa + 343 (main effects)
+f 1X% +:32X§ + ,33X§ (curvature) No correlation
+B12X1 X5 + B13X1 X3 + B3 X2 X5 (interactions) _
+ U ( Nega-liw: correlation

unobserved) \ _

e induce change in explanatory variable, but no other effect on observations
e also useful when there are omitted variables affecting observations
e example:

LS A . covlX,U]|
Y=BX+py+tU — L=+
var[ X]

— if cov[X, U] # 0, then 3 does not reflect true causal effect 8*

e assume instead
Y~BZ+Lo+U

— such that cov[X,Z] # 0 and cov[U,Z] =0
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TESTING FOR INDEPENDENCE

e given time series {X;}, and {Y;}, decide if they are (conditionally) independent

e define hypotheses
Ho: XULY and H,: X LY

e choose test statistics S, and compare it to threshold, § s Ty,

e empirical correlation with t-test or Fisher’s z-transform

e y’-test and odds ratios
— use relative frequencies for conditional and marginal distributions

e non-parametric test: kernel projections/maps u
S =lu(pxy) —u(pxpy)ll, or S =E[u(X)u(Y)] =E[u1(X)]|E[ua(Y)]

e conditional independence on Z: testthat, X 1L Y|Z =z, Vz
— need to enumerate all values of Z
— extensions for continuous Z exist
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IDENTIFYING INDEPENDENT VARIABLES

[Peter Spirtes and Clark Glymour, parents and children]
e determines if association is causal using conditional independence tests
e find variables, so conditioning on them, remaining variables are independent

Input: data D, predictor variables {X;}, and target variable Y
Output: parent and children variables of Y

1. set PC = {X;}

2. iteratively remove variables from the PC set that are neither
parents nor children of Y — test independence of Y and removed
variables conditioned on the remaining variables

3. remaining variables in the PC set are parents or children of Y

e removing variables from the PC set is sub-optimum (false positives) — wrong
decisions propagate to next level

e conditional tests are done at given significance «
e several modifications of the original algorithm exist
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CausaL ReAsONING

e a cause leads to a single effect
e an effect has exactly one cause
e hypotheses: H, can be causal, and H, is non-causal or not specific

e if X precedes Y, then X could be cause of Y
e if X cannot precede Y, then X cannot be cause of Y

e linear or monotonic dependence (regression) can be due to confounding

e sufficient conditions to cause or to prevent an effect

e appears in every sufficient cause
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EXxPERIMENT DESIGN

anginearng judgment are important.

Identity factors  Compute design Use design to set  Compute best fit Use model to find
and responses.  for maximum factors: measure  of mathematical best factor settings
information from response for each modelto data  for on-target
runs. run. from test runs.  responses and
minimum vanability.

i Kay engineenng steps: process knowledge and l

Key mathematical steps: appropriate
computer-based tools are ampowearing.

e manipulate (some) inputs to determine changes in observed response
e identify sources of variations
e comparative vs. observational experiments

e controlled inputs: factors

e uncontrolled inputs: blocking variables, covariates, nuisance variables
e all inputs: predictors, independent variables

e all outputs: dependent, response variables
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SuBJecTs/DATA SAMPLING

e contain both known and unknown confounding otherwise bias
e necessary for excessively large populations (data)

e simple random sampling e cluster sampling
e stratified sampling e systematic sampling

e t00 many samples
— waste of resources, may not be statistically meaningful

e too few samples
— not accurately represent population, not statistically significant

two experiments, or one experiment with twice as many samples?

e Pearson: as many samples as possible
— more samples, more statistical power

e Fisher: fewer, but representative samples
— detecting effect with less samples is statistically more powerful
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ScREENING MoDELS/EXPERIMENTS

e identify key factors most affecting the outcome

e ideally, no confounding, and factors are independent
— factor interactions may or not be statistically significant
— separate the outcome effects from the factor interactions

e maximize/minimize outcome effects

e one-at-time: simple, but inefficient and unreliable
e factors quantization: low, average, high (still too complex)

e fractional factorial designs
— experiments with selected factor settings
— omitted experiments cause aliasing of effects
— some outcomes can be predicted from other experiments

e randomization, blocking, balancing
e can be also used for non-significant effects
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VARIANCE EXPANSIONS

Y =f(X1,X2,...,Xy) = f0+Zﬁ(X)+Zﬁ](Xl’X)+ -+ Z Sroen-1(X1,..., Xn-1)

<j except i

V(Y)—ZV+ZV,J+Z Vig+-+Vian

i<j i<j<l
where
Vi = Vx(Ex [YIXi])
Vi = Vi, (Bx | YIX X)) - ViV,
Vin = Vxxx(Ex__ [Yle,X],Xl]) Viim=Vy=Vuy=Vi=V;=V,

e generally not unique, but unique if the terms are orthogonal:
— several other strategies exist
e can be used for sensitivity analysis, factor screening and similar
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BAYESIAN EXPERIMENT DESIGN
design model
. / po)  Plommd)
- p(x
_ p(x{8.d,m) p(6,m) __x=gm(8,d) —
p(8lx,d,m) = S0 p(d)

e can choose from multiple models m € {1,2,..., M}

e model (input) parameters

0 € Q. uncontrolled unknown inputs
d € D: controlled known inputs

e the objective is to specify the optimum design d to aid estimation of 8 and
selection of model m from observations x

e define average utility U(d) for the experiment setting d
— average over data x, model m, parameters 6

e the optimum experiment design

d* = argmax ., U(d) = argmax ., E, . o[U(d,x,m,0)]
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OprTiMmum EXPERIMENT DESIGN

e maximize utility, minimize variance, maximize information or entropy
e across whole design space while limiting computational complexity

U(d) = ff Uld,x,0) x p@xld) dd9dx = d"=argmax,., U(d)
Dgr(p@lx,d)||p®)  p(Olx,d)p(x|d)

e expected utility of N experiments # sum of their utilities

e perform N-times the single optimally designed experiment
— combine outputs to reduce the variance

e posterior p(0, x,|d;) used as prior for the (¢ + 1)-th experiment
— can adapt sequence of models m;

e greedy approach, the optimum design is a dynamic programming problem
— may outperform batch design due to inherent adaptation
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MobDEL SELECTION

o y
e two models M; and M, yield two : Y
predictions A and B, respectively 2 R )
— joint prediction has much larger N /
discriminatory power than \ af
individual predictions | \
l\ I;':I
\of
M'easurable IPrediE:ﬁon A
MLR> 1
. . . . C )
e model likelihood ratio given data X: '
— pX|My) <
MLR = p—(Xle) > 1 M, MLR< |
e however, M, is much more likely to better Y
2

explain majority of random experiments \



Pavel Loskot, ZJU-UIUC ©2024 20/38

StrucTURAL CAusaL MopeLs (SCM)

e Markov causal assumption and faithfulness condition —
e extend/modify Bayesian networks

— directed edges indicate causal effects rather THE
than statistical dependencies BOOK OF
— avoid cycles (avoid variable to be cause of itself) WHY

e can accommodate interventions - —_

— do(-) operator and do-calculus
e allow for non-linear dependencies

e endogenous noises are not shown explicitly

e 1 are exogenous unobserved variables/effects
(effects outside the model) y < fy(x, z uy)

e asymmetry: x « zlu # z « x|u
symmetry: x 1L yju = y 1L x|u

e / «— ——— — Y indicates there is unobserved
common cause, i.e., Z«— U —>Y
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Learning SCM
can causality be discovered from observations?

e can causal graph be identified Test | _-\’n]” -}‘x!jv-ryleﬂi}_-f
from the joint distribution? TP 2t
— is this graph unique?

. g p q Correlation A B A——B

e basic rules
— X and Y adjacent in graph iff Linkage B A B— A
they cannot be d-separated
— non-adjacent X andY N C C
can be d-separated Conditional / / \

[ndependence
e for Gaussian noises N A—B A—B
C c

(GEHE[‘HIJ SCM: X,f = f.' [Xl’.-'-lf-.-"\'rjj -ﬁ Relevance / / \

ANM: Xr,. :=_fl.-[.‘-‘fmj}+Nj ¢ A B A— B

CAM: ;‘:j = E.‘.‘{l’.ij- fjk{xﬁ:} +N; '{ c c

L?Hﬂﬂr Gaussian: Xji=Tpcra, BpXa +N; A Controlled / \ / \

Lin. G., eq. error var.: X;:= Ek{mj BinXe +N; v A B A LR
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LearRNING SCM rFrom DatA

EAR R o]

X L X, X
mmpc.ndmu:c v, L XX faithfulness and
X; AL X5 | X5

-
X AL X5 |X, Markov \
\&(’H\
, | ®
X1 := filM) |
irfr r't,":.w ”.':.'r(_':{]' xl - "I: Iq.‘l""lz : J
X3 := f3(X1,M3)

Mode] ¢jagg ¥ F1(X. Xz Ny ) read off
4 = falAz,A3,004 |

Y

L]

tesls

ML Ny independent

ke

1. testing conditional independence in data
— graph structure implied by Markov condition and faithfulness
— (often) may not yield a unique graph

2. define the model structure and fit SCM directly
— identify model with the best score/likelinood to fit the data
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WorkinGg wiTH SCM

e conditional independence relationships

chani A—-B—->C = AjJdCandA 1 C|B
fork: A«~B—->C = AJlCandA L C|B
colider: A—->B«C = Al1dCandA L C|B

— conditioning on B, chain and fork block (d-separate) path A < C
— conditioned on B, collider opens the path A & C

e D-separation implies the following testable causal independences
— causal discovery: conditional independence learned from data

& » LR

AN B e ALSB AlLC
G AL ED BL1E|D
C1E|D



Pavel Loskot, ZJU-UIUC ©2024 24/38

Do-CaLcuLus (1)

1. observations can be inserted/deleted in conditional probabilities
2. actions and observations can be exchanged in conditional probabilities
3. actions can be inserted/deleted in conditional probabilities

e if causal effect is identifiable, the causal effect statement can be transformed
into probability expressions containing only observable variables
— prone to automation

e unknown causal dependencies can be replaced with conditional distributions

e removing confounding bias

e define surrogate experiments

e recovery from selection bias

e extrapolating causal knowledge to other scenarios
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Do-CaLcuLus (2)

e change data generation process from P(Y|X) to P(Y|do(X))
— replace causal mechanism f,(x) with setting x to a constant x

i z
ar M‘xhh X0 HH_.\ R

ff,-f 'Mx I . § ~.~
‘#‘ Se * HE:
X Y X : |

Z = f(uz) z  fz(u,)

X=tzZw) 7 Nxex

¥ = JL:.,,.(X 4 Lif_,,j] YA ﬂr{?{' £ H‘f)

e actual performance

Y=fo(X)p(X)dX

¢ inferred hypothetical (counterfactual) performance due to intervention

. ) P (X)
Y = X)p*(X)dX = X
fxf( )P %) fxf( )p(X)

p(X)dX
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CausaL GRAPH ExAmPLES

e direct causal paths: X - Z,Z—-Y,X—>Y
e backdoor path betweenZandVY:Z— X —>Y

(X is common cause, confounder) P a T

e conditioned on X blocks the backdoor path X——> L ——>7Y
and allows causal inference

e U Is unmeasured/unobserved statistics
(confounding by indication)

U
e confounded associations: / \

X—>/Z->Y U—->X—->7Z2-Y
— . , , X—> / ——>Y
e conditioning on U is not possible whilst

conditioning on X removes any unmeasured
confounding
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CausaL GRAPH EXAMPLES (CONT.)

e U is unmeasured/unobserved statistics / \
e conditioning on X is sufficient to block
backdoor path L ———>Y

\/

e U; and U, are unmeasured, and without any
conditioning, there is no bias

e fixing X will induce selection bias by opening /
backdoor path Z « U, - X « U; - Y \
between Z and Y

e conditioning on X will create direct and \ /
backdoor associations between Z and Y
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WoRkING WITH BAYESIAN NETWORKS

e convert SCM to a Bayesian network using do-calculus

e define queries as inference tasks

filx) = >, f(x1,...,x,) (marginalization)
R excopt X
filxp) = ‘max f(x1,...,x,) (maximization)
excopt 1)
f(Xtha---aXn) — HlJn:]f:](S]), S]g{Xl,,Xn}

(X1, X5,...,X,)

S S ) SC X, Xa)

F(x1,x2, X3, X4, %5) = fa(x1,%2,%3) - (X3, X4, X5) * fc(x4)

/B

Ia

L £L3

T9

Ty

-!I.-‘ 5

fc
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PoTeENTIAL OuTcoMES FRAMEWORK

e evaluate potential outcome of an action or intervention
— whatever action, counterfactual outcome is never known
OA=1) and O(A=0)

e quantify the factor change (type, duration, frequency) to cause the outcome
— i.e., not to determine if the factor is a cause
— counterfactual inference is agnostic to identifying actual causes

e compute the average causal effect

ACE =E[O(A=1)-0(A =0)]

— add comparison group to represent a counterfactual scenario
— many variations how to define/choose comparison group
e potential outcomes and actual interventions must be independent
— control for confounding (randomization, ...)
— but the more variables to control, the more difficult experiment design
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CausaLiTy IN TIME-SERIES (1)

- P S oo N 0., MU () (22 AN e
( VXD 1 b X o ) X ) Xy )= [ X/ X’ 'X; 56 —=(Xiiq)
~(B) @) )~ E) > ()~ T D
X . s
AN A A Ao ’”"\ T i
N A (. e
—_ X]\—‘;-u'/)rfl)%--&]ﬁ.'——-&,] — X [ X! IX] _’"X; _,I'"XF %-X,l
! \\:l\\:;) i A i 7 \ 2 \ U\ Y
/_q '/;——-\\ ra_h\\ 2 /2 7 ¥
—~()—@)—>E) )~ R~ —(¥)—>E) *“'\gffx'*'\:t;v'*fz )

e summary graph: X° « X! — Xx?
— summary graphs can be cyclic

'/’_[\‘ / /_]-‘\;’)(ii/_]ﬂ\ -./_] -f/_l-\,
I 222
\ e ‘\ . \\ L ‘\ e
PN TN RS
W Rl O Rl W
‘ 5 USR] & :

r | 3 \ 4 /- ‘X f
|@| }'-/\”Er#l }I/Ei;l }'-\f;}:ﬁ b | X%}'/,

e summary graph: X! - X? — X3

e interventions during observed instances: no causal effect from X! to X?
— there are ways to account for hidden causal effects
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CausaLITY IN TIME-SERIES (2)

e different for time series with/without instantaneous effects
e identify if cause-effect exists, and preferably also its direction

1. Two SCM without instantaneous effects are equal, if the corresponding full
time graphs are Markov equivalent.

2. Two SCM are equal, if the corresponding full time graphs are Markov
equivalent and their summary graphs are acyclic.

3. Justification of Granger causality: If SCM does not have instantaneous
effects, and the joint distribution has faithful property, then summary graph

_ . e . >
contains X' — X/ iff X; U X o 1 XD

o ifY, 4 Xpast(t) | Ypast(r)s then X - Y

e if there are no instantaneous effects, and Y; AL Xy | Ypasir, then
X does not cause Y
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CausALITY IN TIME-SERIES (3)
AN AN A

(X6 )—>=(Xi—5 ) —>(Xi-4) %'“"5
\_.,/\\ N \x?f\ 2

o test independence Y; 1L Xpasir) | Ypast(r) 10 infer summary graphs:
XandY, X—-Y X« Y, XSY

o formally, X Granger-causes Y < Y; L Xpasi() | Ypast()
— past history of X, helps to predict Y,

e alternatively, time series X, Granger-causes time series Y, if
var[Y)|Y; -, X; ] < var[Y,|Y;_.]

e the lag 7 can be determined using information criteria (Akaike, Schwartz)

Y, ~ ZaiXt_,-+ijYt_j+ut

e hypothesis Hy: a;=0is a bétter modeIJ(then, X; does not cause Y,)
e use F-statistics in the modified Wald test
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CausaLITY IN TIME-SERIES (4)

| X 53:_}":,\)(: 2 )= X [ X J

N /x/ /\A/ / seadl | /;(E "\1 6{{ ? /X;D /’\
" \j ARG,
o N
" \i g . ¥ l
R AR o - K_/ ()~
\f__/ \ A r

e (Granger causality cannot detect

e due to common cause Z, X and influence of X on Y

Y are (erroneously) detected as
Granger-causal

/_ —> X % X_\\ //m\'
| | t —> X; |
A

() () () () oo o d
XXX () (02 ()~
S 0 gcer ey oo

e Granger causality correctly
e for deterministic InﬂuenCeS, they detects influence of X on Y

cannot be detected by Granger
causality
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CausaLITY IN TiIME-SERIES (5)

e idle regime: no intervention to X;

e atomic intervention: X; = X*

e conditional intervention: X; = g,(X;.,-1)
e random intervention: X, ~ p(X;|Xi..~1)

(ACE)
e assume intervention o in X; at time ¢, then
ACE(t +1;0%) = Eq [ X14:] — E[Xp4], 7> 0
e difference of difference
DoD(t+1;0;,07) = ACE(t + 1;0;) — ACE(t + 7;07)
e can assume other statistics e.g. variance

X, = f(Xl:t—laYI:t—laZI:t—la Ut)
Y, = gXi-1.Y14-1,214-1, V1)
e f and g are known
e 7 are all observed variables, (U, V) are unobserved variables
e if X does not structurally cause Y, then E, [A(Y;i:)] = E[A(Y11)]
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CAausALITY IN CHEMIcAL ReEacTiON NETWORKS

non-effect non-cause

e identify causal associations between subsequences e; of reaction events
e exploit empirical conditional probabilities (a.k.a. attentions)
e ordering of reactions within e; is irrelevant

1. e; causes e, If Pr(e J-|e,-) — 1 (certain conditional event)

2. e; does not cause e, if Pr(e j|ei) — 0 (uncertain conditional event)

P. Loskot, Computational Biology and Chemistry, 2024.
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CausaL LEARNING

Pr(cause) L
Pr(effect) 4L

Pr(effect|cause)
Pr(cause|effect)

sequences
of random variables

_ sequences
of discrete events

Monte 7 OBSERVER
Carlo summary statistics
simulation

REPRESENTATION
event/anomaly detection

—__ conventional

MODELING

structure inference

approach
A 4
ANALYSIS
VISUALIZATION causal/statistical inference
Y knowledge extraction

e inputs X, outputs Y

e augmented outputs Z

e inferred latent statistics U
e identified events £

e identified associations A

Complete SEM/SCM

Incomplete SEM/SCM

Descriptive
models

—= conventional MC simulations

v

Predictive
models

‘,/,7 fill-in gaps in simulation outputs
\ improve simulation efficiency

v

Pru.«;crinLi ve
models

validate simulations
< identify further improvements

Explainable
simulations
Analytical

simulations

Evidence based
simulations
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TAKeE-HoME MESSAGES

e relies on statistical inferences and probabilistic models

e can expand capabilities of machine learning

e is intimately connected with explainability

e is also required for replicable outcomes, automate knowledge discovery

e identify cause-effect relationships (direction, strength)

e association does not imply causality

e causality can be learned via independence testing

e |learning causal relationship from data is often difficult

e methods, data and experiments are equivalent representations

e interventions and counterfactuals
e SCM, do-calculus, and do-operator

P(Y|X) # P(Y|do(X))
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CAUSAL
INFERENCE
FOR

STATISTICS,
SOCIAL,
AND
BIOMEDICAL
SCIENCES

GUIDO W. IMBENS
DONALD B. RUBIN

PC algorithm
GES
LINGAM
GOLEM
gCastel

CD Toolbox

TEXTBOOKS ON CAUSAL INFERENCE

OREILLY

CAUSAL INFERENCE

i  Causal [ 1]
nrerence '
in Python ¢ 96666

uRe LU Inference
e KO CAUSAL INFERENCE
s G N STATISTICS

A Primer

Counterfactuals and
Causal Inference

Methods and Principles for Social Research
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