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About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received his PhD degree in Wireless Communications from the University of Alberta in Canada,

and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,

from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow

of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE.

In the past 25 years, he was involved in numerous industrial and academic collaborative

projects in the Czech Republic, Finland, Canada, the UK, Turkey, and China. These projects

concerned mainly wireless and optical telecommunication networks, but also genetic regulatory

circuits, air transport services, and renewable energy systems. This experience allowed him to

truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on statistical signal processing and importing methods from

Telecommunication Engineering and Computer Science to model and analyze systems more

efficiently and with greater information power.
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Objective

Explore basic ideas in causal analysis

→ it involves data, models, experiments, and methods

→ it answers questions such as “why” and “what if ”

→ it is becoming popular and included in university curricula

Topics

1. Causal associations

2. Experiment design

3. Structural causal models and

do-calculus

4. Causality in time-series
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Fundamental Observations

Ignored equivalences

• machine learning models represented by datasets
→ input-&-output samples (=labeled data)
→ input-or-output samples (=unlabeled data)

• experiments are natural data/signal/info processing systems

Causal inference

• evidence-based explainability is becoming a ubiquitous task

cause effect

Causal learning

Anticausal learning
observations

inferences

causality
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Data and Signal Processing
Aims

• unbiased and accurate

• sample and information efficient

• resources effective (effort, time)

• systematic, replicable, generalizable

Consideration

• data already available or not?
→ forward modeling
→ reverse modeling

Explainability requires to

• decide about the effect of [ independent variable] on
[dependent variable]

• decide what causes change or variations in
observed response

• predict unobserved response if ... (counterfactuals)

• compare responses under different settings
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Associations and Causality

Observed correlations

• X and Y are correlated

• Z is confounder

• X and Y are independent
conditioned on Z
→ associations can be
accidental, spurious or conditional

X

Y

X

Y

Direct
cause

Z

Association Association

Confounding

Strength of association

• strong association is neither necessary nor sufficient for causality

• weak association is neither necessary nor sufficient for absence of causality

Conditional independence

X ⊥⊥ Y ⇒ ρXY = 0 (uncorrelated)

1. p(X,Y |Z) = p(X|Z)p(Y |Z) ⇔ X ⊥⊥ Y |Z

2. X ⊥⊥ Y,W |Z ⇒ X ⊥⊥ Y |Z ∨ X ⊥⊥ Y |W,Z

3. X ⊥⊥ Y |Z ∧ X ⊥⊥W |Y,Z ⇒ X ⊥⊥ Y,W |Z

4. X ⊥⊥ Y |W,Z ∧ X ⊥⊥W |Y,Z ⇒ X ⊥⊥ Y,W |Z
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Mechanisms Influencing Causal Relationships

Mediator

• caused by independent variable

• influences dependent variable

• can be full or partial

• increases correlations when taken into account

Moderator

• constrains the relationship between variables

• defines conditions for the relationship to exist

• influences level, direction, or presence of the relationship
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Measuring Associations

Pearson correlation

ρXY =
1

n−1

n∑

i=1

(

xi− x̄

σX

)(

yi− ȳ

σY

)

Spearman correlation

ρXY = 1−
6

n(n2−1)

∑

i

rank difference2
i

ρXY = 0 : X,Y uncorrelated

and also Gaussian ⇒ independent

Partial correlation

ρXY |Z =
ρXY −ρXZρYZ

√

(1−ρ2
XZ

)(1−ρ2
YZ

)

→ correlation between residuals of linear regression of X on Z and Y on Z

ρXY |Z = 0 : X,Y partially uncorrelated given Z

ρXY |Z = 0 ; X ⊥⊥ Y |Z

ρXY |Z = 0 : X ⊥⊥ Y |Z
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Correlations in Multiple Dimensions

Problem

• measuring correlations for more than two random variables

Define

|xxx|1 = |X1+X2+ · · ·+XN | (this is not l1-norm ‖xxx‖1 = |X1|+ · · ·+ |XN |)

m-th central sum-moment of random vector XXX ∈ RN

µm(|XXX|1) = E
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, m = 1,2, . . .

m-th central sum-moment for L random processes with Nl observations

µm(|XXX1|1+ . . .+ |XXXL|1) = E
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P. Loskot, “Polynomial Representations of High-Dimensional Observations of Random

Processes,” Mathematics, 9(123), Jan. 2021.
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Statistical Dependencies
Linear regression

Y = β0 (constant)

+β1X1+β2X2+β3X3 (main effects)

+β1X2
1
+β2X2

2
+β3X2

3
(curvature)

+β12X1X2+β13X1X3+β23X2X3 (interactions)

+U (unobserved)

Instrumental variables

• induce change in explanatory variable, but no other effect on observations

• also useful when there are omitted variables affecting observations

• example:

Y ≈ βX+β0+U
LS
−−→ β̂ = β∗+

cov[X,U]

var[X]

→ if cov[X,U] , 0, then β̂ does not reflect true causal effect β∗

• assume instead
Y ≈ βZ+β0+U

→ such that cov[X,Z] , 0 and cov[U,Z] = 0
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Testing for Independence

Task

• given time series {Xi}, and {Yi}, decide if they are (conditionally) independent

Hypothesis test

• define hypotheses

H0 : X ⊥⊥ Y and Ha : X 6⊥⊥ Y

• choose test statistics S , and compare it to threshold, S ≶ Tthr

Statistics

• empirical correlation with t-test or Fisher’s z-transform

• χ2-test and odds ratios
→ use relative frequencies for conditional and marginal distributions

• non-parametric test: kernel projections/maps µ

S = ‖µ(pXY)−µ(pX pY)‖ , or S = E
[

µ1(X)µ2(Y)
]

−E
[

µ1(X)
]

E
[

µ2(Y)
]

• conditional independence on Z: test that, X ⊥⊥ Y |Z = z, ∀z
→ need to enumerate all values of Z
→ extensions for continuous Z exist
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Identifying Independent Variables

PC algorithm [Peter Spirtes and Clark Glymour, parents and children]

• determines if association is causal using conditional independence tests

• find variables, so conditioning on them, remaining variables are independent

Input: data DDD, predictor variables {Xi}, and target variable Y
Output: parent and children variables of Y

1. set PC = {Xi}

2. iteratively remove variables from the PC set that are neither
parents nor children of Y → test independence of Y and removed
variables conditioned on the remaining variables

3. remaining variables in the PC set are parents or children of Y

False discoveries by PC algorithm

• removing variables from the PC set is sub-optimum (false positives)→ wrong
decisions propagate to next level

• conditional tests are done at given significance α

• several modifications of the original algorithm exist
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Causal Reasoning

Causal specificity

• a cause leads to a single effect

• an effect has exactly one cause

• hypotheses: H0 can be causal, andHa is non-causal or not specific

Temporality

• if X precedes Y, then X could be cause of Y

• if X cannot precede Y, then X cannot be cause of Y

Trend

• linear or monotonic dependence (regression) can be due to confounding

Sufficient cause

• sufficient conditions to cause or to prevent an effect

Necessary causal cause

• appears in every sufficient cause
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Experiment Design

Key ideas

• manipulate (some) inputs to determine changes in observed response

• identify sources of variations

• comparative vs. observational experiments

Inputs and outputs

• controlled inputs: factors

• uncontrolled inputs: blocking variables, covariates, nuisance variables

• all inputs: predictors, independent variables

• all outputs: dependent, response variables
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Subjects/Data Sampling

Objective

• contain both known and unknown confounding otherwise bias

• necessary for excessively large populations (data)

Basic methods

• simple random sampling

• stratified sampling

• cluster sampling

• systematic sampling

Sample size

• too many samples
→ waste of resources, may not be statistically meaningful

• too few samples
→ not accurately represent population, not statistically significant

two experiments, or one experiment with twice as many samples?

Two basic strategies

• Pearson: as many samples as possible
→ more samples, more statistical power

• Fisher: fewer, but representative samples
→ detecting effect with less samples is statistically more powerful
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Screening Models/Experiments

Objective

• identify key factors most affecting the outcome

• ideally, no confounding, and factors are independent
→ factor interactions may or not be statistically significant
→ separate the outcome effects from the factor interactions

• maximize/minimize outcome effects

Screening methods

• one-at-time: simple, but inefficient and unreliable

• factors quantization: low, average, high (still too complex)

• fractional factorial designs
→ experiments with selected factor settings
→ omitted experiments cause aliasing of effects
→ some outcomes can be predicted from other experiments

Remove/control confounding

• randomization, blocking, balancing

• can be also used for non-significant effects
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Variance Expansions

Sobol’s expansion

Y = f (X1,X2, . . . ,XN)= f0+
∑

i

fi(Xi)+
∑

i< j

fi j(Xi,X j)+ · · ·+
∑

except i

f12···N−1(X1, . . . ,XN−1)

Variance expansion

V(Y) =
∑

i

Vi+

∑

i< j

Vi j+

∑

i< j<l

Vi jl+ · · ·+V12...N

where

Vi = VXi

(

EX−i
[Y |Xi]

)

Vi j = VXiX j

(

EX−i− j

[

Y |Xi,X j

] )

−Vi−V j

Vi jl = VXiX jXl

(

EX−i− j−l

[

Y |Xi,X j,Xl

] )

−Vi j−V jl−Vil−Vi−V j−Vl

• generally not unique, but unique if the terms are orthogonal:

→ several other strategies exist

• can be used for sensitivity analysis, factor screening and similar
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Bayesian Experiment Design

p(θ|x,d,m) = p(x|θ,d,m) p(θ,m)
p(x|d,m)

modeldesign

p(d)

p(θ)
p(x)

x = gm(θ,d)

p(x|θm,m,d)

New problem

• can choose from multiple models m ∈ {1,2, . . . ,M}

• model (input) parameters

θ ∈Ω: uncontrolled unknown inputs

d ∈ D: controlled known inputs

• the objective is to specify the optimum design d to aid estimation of θ and
selection of model m from observations x

Strategy

• define average utility U(d) for the experiment setting d
→ average over data x, model m, parameters θ

• the optimum experiment design

d∗ = argmaxd∈D Ū(d) = argmaxd∈D Ex,m,θ[U(d, x,m, θ)]
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Optimum Experiment Design

Objectives

• maximize utility, minimize variance, maximize information or entropy

• across whole design space while limiting computational complexity

Expected utility for single experiment

Ū(d) =

∫

X

∫

Θ

U(d, x, θ)
︸    ︷︷    ︸

DKL(p(θ|x,d)‖ p(θ))

× p(θ, x|d)
︸   ︷︷   ︸

p(θ|x,d)p(x|d)

dθdx ⇒ d∗ = argmaxd∈D Ū(d)

Batch experiment design

• expected utility of N experiments , sum of their utilities

• perform N-times the single optimally designed experiment
→ combine outputs to reduce the variance

Sequential experiment design

• posterior p(θ, xt|dt) used as prior for the (t+1)-th experiment
→ can adapt sequence of models mt

• greedy approach, the optimum design is a dynamic programming problem
→ may outperform batch design due to inherent adaptation
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Model Selection

Multiple models

• two models M1 and M2 yield two
predictions A and B, respectively
→ joint prediction has much larger

discriminatory power than
individual predictions

Vanlier et al., BMC Systems Biol., 8:20, 2014.

Comparing model confidence

• model likelihood ratio given data X:

MLR =∝
p(X|M1)

p(X|M2)
≶ 1

• however, M2 is much more likely to better
explain majority of random experiments

M1

MLR< 1

MLR> 1

M2
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Structural Causal Models (SCM)

Key ideas

• Markov causal assumption and faithfulness condition

• extend/modify Bayesian networks
→ directed edges indicate causal effects rather
than statistical dependencies
→ avoid cycles (avoid variable to be cause of itself)

• can accommodate interventions
→ do(·) operator and do-calculus

• allow for non-linear dependencies

SCM rules

• endogenous noises are not shown explicitly

• u are exogenous unobserved variables/effects
(effects outside the model)

• asymmetry: x← z|u , z← x|u

symmetry: x ⊥⊥ y|u = y ⊥⊥ x|u

• Z ← −−− → Y indicates there is unobserved
common cause, i.e., Z← U → Y
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Learning SCM

Fundamental question

can causality be discovered from observations?

Identifiability

• can causal graph be identified
from the joint distribution?
→ is this graph unique?

• basic rules

→ X and Y adjacent in graph iff
they cannot be d-separated

→ non-adjacent X and Y
can be d-separated

• for Gaussian noises N j
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Learning SCM from Data

Main strategies

1. testing conditional independence in data
→ graph structure implied by Markov condition and faithfulness
→ (often) may not yield a unique graph

2. define the model structure and fit SCM directly
→ identify model with the best score/likelihood to fit the data
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Working with SCM

D-separation

• conditional independence relationships

chain: A→ B→C ⇒ A 6⊥⊥C and A ⊥⊥C|B

fork: A← B→C ⇒ A 6⊥⊥C and A ⊥⊥C|B

collider: A→ B←C ⇒ A ⊥⊥C and A 6⊥⊥C|B

→ conditioning on B, chain and fork block (d-separate) path A↔C

→ conditioned on B, collider opens the path A↔C

SCM example

• D-separation implies the following testable causal independences
→ causal discovery: conditional independence learned from data
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Do-Calculus (1)

Pearl’s rules of do-calculus

1. observations can be inserted/deleted in conditional probabilities

2. actions and observations can be exchanged in conditional probabilities

3. actions can be inserted/deleted in conditional probabilities

Inference by do-calculus

• if causal effect is identifiable, the causal effect statement can be transformed
into probability expressions containing only observable variables
→ prone to automation

• unknown causal dependencies can be replaced with conditional distributions

Typical applications of do-calculus

• removing confounding bias

• define surrogate experiments

• recovery from selection bias

• extrapolating causal knowledge to other scenarios
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Do-Calculus (2)

Model intervention with the do-operator

• change data generation process from P(Y |X) to P(Y |do(X))
→ replace causal mechanism fx(x) with setting x to a constant x0

Hypothetical performance improvement

• actual performance

Y =

∫

X

f (X) p(X)dX

• inferred hypothetical (counterfactual) performance due to intervention

Y∗ =

∫

X

f (X) p∗(X)dX =

∫

X

f (X)
p∗(X)

p(X)
p(X)dX
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Causal Graph Examples

Example 1

• direct causal paths: X→ Z, Z→ Y, X→ Y

• backdoor path between Z and Y: Z← X→ Y
(X is common cause, confounder)

• conditioned on X blocks the backdoor path
and allows causal inference

Example 2

• U is unmeasured/unobserved statistics
(confounding by indication)

• confounded associations:
X→ Z→ Y, U → X→ Z→ Y

• conditioning on U is not possible whilst
conditioning on X removes any unmeasured
confounding
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Causal Graph Examples (cont.)

Example 3

• U is unmeasured/unobserved statistics

• conditioning on X is sufficient to block
backdoor path

Example 4

• U1 and U2 are unmeasured, and without any
conditioning, there is no bias

• fixing X will induce selection bias by opening
backdoor path Z ← U2 → X ← U1 → Y
between Z and Y

• conditioning on X will create direct and
backdoor associations between Z and Y
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Working with Bayesian Networks

Key idea

• convert SCM to a Bayesian network using do-calculus

• define queries as inference tasks

f̄k(xk) =
∑

x1,...,xn
except xk

f (x1, . . . , xn) (marginalization)

f̂k(xk) = max
x1,...,xn
except xk

f (x1, . . . , xn) (maximization)

Factor graphs

f (X1,X2, . . . ,Xn) =
∏m

j=1 f j(S j), S j ⊆ {X1, . . . ,Xn}

f (X1,X2, . . . ,Xn) =
∑m

j=1 f j(S j), S j ⊆ {X1, . . . ,Xn}

Example

f (x1, x2, x3, x4, x5) = fA(x1, x2, x3) · fB(x3, x4, x5) · fC(x4)
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Potential Outcomes Framework

Key ideas

• evaluate potential outcome of an action or intervention

→ whatever action, counterfactual outcome is never known

O(A = 1) and O(A = 0)

• quantify the factor change (type, duration, frequency) to cause the outcome

→ i.e., not to determine if the factor is a cause

→ counterfactual inference is agnostic to identifying actual causes

• compute the average causal effect

ACE = E[O(A = 1)−O(A = 0)]

→ add comparison group to represent a counterfactual scenario

→ many variations how to define/choose comparison group

• potential outcomes and actual interventions must be independent

→ control for confounding (randomization, ...)

→ but the more variables to control, the more difficult experiment design
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Causality in Time-Series (1)

Instantaneous effects

• summary graph: X3 ← X1 → X2

→ summary graphs can be cyclic

Subsampling

• summary graph: X1 → X2 → X3

• interventions during observed instances: no causal effect from X1 to X2

→ there are ways to account for hidden causal effects
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Causality in Time-Series (2)

Identifiability

• different for time series with/without instantaneous effects

• identify if cause-effect exists, and preferably also its direction

Identifiability theorems

1. Two SCM without instantaneous effects are equal, if the corresponding full
time graphs are Markov equivalent.

2. Two SCM are equal, if the corresponding full time graphs are Markov
equivalent and their summary graphs are acyclic.

3. Justification of Granger causality: If SCM does not have instantaneous
effects, and the joint distribution has faithful property, then summary graph

contains Xi → X j iff X
j
t 6⊥⊥ Xi

past(t)
|X−i

past(t)
.

Examples

• if Yt 6⊥⊥ Xpast(t) |Ypast(t), then X→ Y

• if there are no instantaneous effects, and Yt ⊥⊥ Xpast(t) |Ypast(t), then
X does not cause Y
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Causality in Time-Series (3)

Granger causality

• test independence Yt ⊥⊥ Xpast(t) |Ypast(t) to infer summary graphs:
X and Y, X→ Y, X← Y, X⇆ Y

• formally, X Granger-causes Y ⇐⇒ Yt 6⊥⊥ Xpast(t) |Ypast(t)

→ past history of Xt helps to predict Yt

• alternatively, time series Xt Granger-causes time series Yt, if

var[Yt|Yt−τ,Xt−τ] < var[Yt|Yt−τ]

• the lag τ can be determined using information criteria (Akaike, Schwartz)

In practice

Yt ≈
∑

i

aiXt−i+

∑

j

b jYt− j+ut

• hypothesisH0: ai = 0 is a better model (then, Xt does not cause Yt)

• use F-statistics in the modified Wald test
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Causality in Time-Series (4)

Limitations of Granger causality

• due to common cause Z, X and
Y are (erroneously) detected as
Granger-causal

• for deterministic influences, they
cannot be detected by Granger
causality

• Granger causality cannot detect
influence of X on Y

• Granger causality correctly
detects influence of X on Y
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Causality in Time-Series (5)

Intervention causality

• idle regime: no intervention to Xt

• atomic intervention: Xt = X∗

• conditional intervention: Xt = gt(X1:t−1)

• random intervention: Xt ∼ pt(Xt|X1:t−1)

Average causal effect (ACE)

• assume intervention σt in Xt at time t, then

ACE(t+τ;σt) = Eσt[Xt+τ]−E[Xt+τ] , τ > 0

• difference of difference

DoD(t+τ;σt,σ
′
t) = ACE(t+τ;σt)−ACE(t+τ;σ′t)

• can assume other statistics e.g. variance

Structural causality

Xt = f (X1:t−1,Y1:t−1,Z1:t−1,Ut)

Yt = g(X1:t−1,Y1:t−1,Z1:t−1,Vt)

• f and g are known

• Z are all observed variables, (U,V) are unobserved variables

• if X does not structurally cause Y, then Eσt[h(Yt+τ)] = E[h(Yt+τ)]
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Causality in Chemical Reaction Networks

QUERY

All OTHER

RESPONSE

QUERY

RESPONSE

All OTHER

1 N1+1 NN1

N1 N2

effect

non-cause

cause

1 N1+1 NN1

N1 N2

effect

non-effect

cause

Task

• identify causal associations between subsequences eeei of reaction events

• exploit empirical conditional probabilities (a.k.a. attentions)

• ordering of reactions within eeei is irrelevant

Define causality as

1. eeei causes eee j, if Pr
(

eee j|eeei

)

→ 1 (certain conditional event)

2. eeei does not cause eee j, if Pr
(

eee j|eeei

)

→ 0 (uncertain conditional event)

P. Loskot, Computational Biology and Chemistry, 2024.
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Causal Learning

Pr(cause) ⊥⊥ Pr(effect |cause)

Pr(effect) 6⊥⊥ Pr(cause |effect)

Augmented Monte-Carlo Simulations

Monte

Carlo

simulation

XXX

YYY

ZZZ OBSERVER REPRESENTATION

detectionevent/anomaly

MODELING

structure inference

ANALYSIS

causal/statistical inference
knowledge extraction

VISUALIZATION

of random variables of discrete events
sequencessequences

summary statistics

conventional
approach

Complete SEM/SCM Incomplete SEM/SCM

SEM/SEC model

• inputs X, outputs Y

• augmented outputs Z

• inferred latent statistics U

• identified events E

• identified associations A



Pavel Loskot, ZJU-UIUC©2024 37/38

Take-Home Messages

Causality

• relies on statistical inferences and probabilistic models

• can expand capabilities of machine learning

• is intimately connected with explainability

• is also required for replicable outcomes, automate knowledge discovery

Key ideas

• identify cause-effect relationships (direction, strength)

• association does not imply causality

• causality can be learned via independence testing

• learning causal relationship from data is often difficult

• methods, data and experiments are equivalent representations

Inferring causality

• interventions and counterfactuals

• SCM, do-calculus, and do-operator

P(Y |X) , P(Y |do(X))
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Textbooks on Causal Inference

Python libraries for causal analysis

PC algorithm https://github.com/topics/pc-algorithm

GES https://github.com/juangamella/ges

LiNGAM https://sites.google.com/view/sshimizu06/lingam

GOLEM https://github.com/ignavierng/golem

gCastel https://github.com/huawei-noah/trustworthyAI/

tree/master/gcastle

CD Toolbox https://github.com/FenTechSolutions/CausalDiscoveryToolbox
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