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Introduction

« RLS adaptive filter < > system identification
b solution of a linear system of equations

* Conventional RLS algorithm =» high complexity

(e.g., network/acoustic echo paths)
large matrix = complexity / numerical issues

CChallenge - identification of long length impulse responses

« Decomposition-based approach < > smaller matrices

b faster convergence, lower complexity

* In this paper: RLS adaptive filter using nearest Kronecker
product (NKP) and third-order tensor decomposition

(TOT) of the impulse response 3



Nearest Kronecker Product (NKP) Decomposition

' Solution for long-length filters:

—> decomposition of impulse responses (® = Kronecker product)
* Impulse response h of length L=L,L,

* Low-rank systems (e.g., echo paths):

/ L e B e 3 / / 3
P P
h:Zh2,P®h1,P’ P<lQ — Zh2p®h1p

P decomposition parameter P (estimate)

* Decomposition-based approach: L=L,L, = PL+ PL,
=> reformulating a high-dimension system identification
problem as a combination of low-dimension solutions.

[Paleologu, Benesty, Ciochina, “Linear system identification based on a Kronecker
product decomposition,” IEEE Trans. Audio, Speech, Language Process., 2018] 4



NKP Decomposition (cont.)

* Impulse response h of length L =L,L,

Ll Ll Ll ooooooooo Ll
1 2 3 L,
* Reshape vector h = H - matrix L, X L,
“full-rank™
Ll Ll Ll oo o Ll >
(L)
1 2 3 L,
1 2 3 L,
“low-rank”™
>
(P<<L,)

« NKP <~ singular value decomposition (SVD) of H



Third-Order Tensor (TOT) Decomposition

* Impulse response h of length L =L,L,L,

* Reshape vector h = H - third-order tensor L, X L, X L,

L —> L
L, outer product

L, L, L, L,
/ p / / ? p /\
:Z ®h2,p ®h1,p, P:. j—[: Zhl,pohz,pOh&p
p=1 rank of the p=l1

tensor

* ! Finding the rank of a TOT is a challenging task

* ! Challenge: avoiding approximation techniques

[Benesty, Paleologu, Ciochina, “Linear system identification based on a third-order
tensor decomposition,” IEEE Signal Processing Letters, 2023]



TOT Decomposition (cont.)

* Impulse response hof length L=L,L,withL,>>L,and L,=L,,L,,

L /\ Ly | Ly L,
h=>h, ®h = > hi, ®h, == h=3 > hj ®h, ®hy,
Lf i=1 L \Ll LL) j= 1\ \Ln i=1 j=I
» Consider that hi is low-rank ——) h’ Zhg@hn, P<L,
p=I
2L [ [ [ [
=—> h=> > h) ®h}, ®hl; 4 4 5{ Zthohpohl
A =r=1 Vi G p=li=1
p 2 Ly, LMXleXL TOT of tatk L, ;
o ran
) H = Z H b (sum of P TOTs of rank L,) (no approximation) ]
p=1
[ [
h(L) = hb(13)&h} &h? L, <LL,, P<L,

L=L,L,L, = L+ PL,,+ PL,, (reduced number of parameters) 7



RLS Based on TOT

* Goal: “extract” / “separate” the individual components:

l Ip Ip _
h, & h, & h{ (l—l,...

 Extraction of hl (l =1,.

la)'

Ly, p=1,...,

P)

h= ZZhl ®h, ©h” —ZZ(IZQ ®h{, ®h; |h,

= H12,1 hy

[=1 p=1 [=1 p=1
2L Ip S I
= Z Z H12 115 ZHlthz
HY, =1, ®h” ®n”, H
1211 — 1L,

— —1

H12,11
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p=I

11> Hizgn = Z H1211

(my)’




RLS Based on TOT (cont.)
« Extraction of hlp & hlp (l =1,....L,, p=1,. P)

/—_\
z z = =
h= ZZhl ®h’, ®h” ZZ(hl ®1;,, ®hf |hf) =...=H,,hy,
I=1 p=1 I=1 p=1
L, P l " ?/_\\
= Z Z (hz ®hj, ®Ilﬂ )hll = =H2,121_111
[=1 p=1

* Notation: g. and G. = estimates of h. and H., respectively
e (n) =d (n) — gT (n — 1) X(n) ——»> Least-squares (LS) criterion




RLS Based on TOT (cont.)

« LScostfunctions ==)» Normal equations

( ‘gIZ’gll) = Rp(n)g,(n)=nap(n) = g,(n)

(— \ _
] ]\glz‘gz’gn; — R211( ) 12( )=r2’11(n) — 512(71)
(— — ) _
_]\g11‘§2’§12) :> R2 12( ) 11( ) 12 (I’l) :> gll(n)
m =» RLS adaptive algorithm using TOT decomposition
(RLS-TOT)
 Final estimate; Advantages

- smaller data structures (matrices)
P - faster convergence/tracking

8 (n) = Z Z glz (n) ® gipz (n) ® gipl (n) - lower computational complexity
[=1 p=I

10



Simulation Results

 Conditions:
= h from ITU-T Rec. G168, with L. =512.
- TOT decomposition: L, =1L,,=16,L,=2
-> h acoustic impulse response, with L = 2048.
- TOT decomposition: L, =1L,,=32,L,=2
—> input signal — AR(1) process with pole at 0.8 / speech sequence
- additive noise — white Gaussian noise, with SNR =20 or 10 dB.

—> performance measure: normalized misalignment (dB).

e Algorithms: 20log [Hh —g(n)H2 /HhHZ}

- conventional RLS

- RLS-TOT

- RLS-NKP /APA / DR-FRLS (see the references [6] / [12] / [13])

11



Simulation Results (cont))
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Figure 1. Complexity order of the conventional RLS algorithm and RLS-TOT
for two impulse responses, with lengths (a) L =512 and (b) L = 2048.
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Simulation Results (cont.)
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Figure 2. Misalignment of the RLS-based algorithms for the identification of a network
impulse response of length L = 512. The forgetting factors are set based on equation (4),
using K = 5 for the conventional RLS algorithm, and K = 45 for the RLS-NKP and RLS-
TOT. The input signal 1s an AR(1) process and SNR = 20 dB.
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Normalized misalignment (dB)

Simulation Results (cont.)
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Figure 3. Misalignment of the APA, DR-FRLS algorithm, and RLS-TOT, for the
identification of an acoustic impulse response of length L = 2048. The RLS-TOT uses two

forgetting factors set based on equation (4), with K = 100, while the third one is equal to 1.
The input signal is speech and SNR = 10 dB.
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Simulation Results (cont.)
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Figure 4. Impulse responses related to the experiment reported in Figure 3: (a) true acoustic
impulse response h; (b) the estimate obtained by APA using the step-size equal to 1; (¢) the

estimate obtained by DR-FRLS using the data-reuse parameter equal to 12; and (d) the
estimate obtained by RLS-TOT using P = 8.
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Conclusions and Perspectives

System 1dentification exploiting a third-order tensor (TOT)
decomposition.

Efficient solution for the 1dentification of long-length low-rank
systems (e.g., echo paths).

High-dimension system identification problem = reformulated as
a combination of low-dimension solutions (three shorter filters).

Solution: RLS adaptive filter based on TOT =» RLS-TOT.

The RLS-TOT outperforms the conventional RLS and other
RLS-based algorithms (faster convergence/tracking & lower
computational complexity).

Future works: - dichotomous CD (DCD) = reduce complexity.

- extension to multidimensional case = higher-order tensors.

- improved versions with variable forgetting factors and variable

regularization parameters. 16
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