Design of Third-Order Tensorial RLS Adaptive Filtering Algorithms

Ionuț-Dorinel Fîciu ${ }^{1}$, Camelia Elisei-Iliescu², Laura-Maria Dogariu ${ }^{1}$, Constantin Paleologu ${ }^{1}$, Cristian-Lucian Stanciu ${ }^{1}$, and Cristian Anghel ${ }^{1}$
${ }^{1}$ National University of Science \& Technology Politehnica Bucharest, Romania email: pale@comm.pub.ro
${ }^{2}$ CNS, ROMATSA, Canada email: camelia.elisei@romatsa.ro

Outline

- Introduction
- Nearest Kronecker Product (NKP) Decomposition
- Third-Order Tensor (TOT) Decomposition
- Recursive Least-Squares (RLS) Based on TOT
- Simulation Results
- Conclusions

Introduction

- RLS adaptive filter \longmapsto system identification
\square solution of a linear system of equations
- Conventional RLS algorithm \rightarrow high complexity
\bullet Challenge \rightarrow identification of long length impulse responses (e.g., network/acoustic echo paths) large matrix \rightarrow complexity / numerical issues
- Decomposition-based approach \longleftrightarrow smaller matrices faster convergence, lower complexity
- In this paper: RLS adaptive filter using nearest Kronecker product (NKP) and third-order tensor decomposition
(TOT) of the impulse response

Nearest Kronecker Product (NKP) Decomposition

! Solution for long-length filters:
\rightarrow decomposition of impulse responses $(\otimes \boldsymbol{\rightarrow}$ Kronecker product)

- Impulse response \mathbf{h} of length $L=L_{1} L_{2}$
- Low-rank systems (e.g., echo paths):

- Decomposition-based approach: $L=L_{1} L_{2} \rightarrow P L_{1}+P L_{2}$
\rightarrow reformulating a high-dimension system identification problem as a combination of low-dimension solutions.
[Paleologu, Benesty, Ciochină, "Linear system identification based on a Kronecker product decomposition," IEEE Trans. Audio, Speech, Language Process., 2018]

NKP Decomposition (cont.)

- Impulse response \mathbf{h} of length $L=L_{1} L_{2}$

L_{1}	L_{1}	L_{1}	$\ldots \ldots$.	L_{1}
1	2	3	$\ldots \ldots \ldots$	L_{2}

- Reshape vector $\mathbf{h} \rightarrow \mathbf{H}$ - matrix $L_{1} \times L_{2}$

- NKP \Longleftrightarrow singular value decomposition (SVD) of \mathbf{H}

Third-Order Tensor (TOT) Decomposition

- Impulse response \mathbf{h} of length $L=L_{1} L_{2} L_{3}$
- Reshape vector $\mathbf{h} \rightarrow \mathcal{H}$ - third-order tensor $L_{1} \times L_{2} \times L_{3}$

- ! Finding the rank of a TOT is a challenging task
- ! Challenge: avoiding approximation techniques
[Benesty, Paleologu, Ciochină, "Linear system identification based on a third-order tensor decomposition," IEEE Signal Processing Letters, 2023]

TOT Decomposition (cont.)

- Impulse response \mathbf{h} of length $L=L_{1} L_{2}$ with $L_{1} \gg L_{2}$ and $L_{1}=L_{11} L_{12}$

- Consider that \mathbf{h}_{1}^{i} is low-rank $\Longleftrightarrow \mathbf{h}_{1}^{i}=\sum_{p=1}^{P} \mathbf{h}_{12}^{i p} \otimes \mathbf{h}_{11}^{i p}, \quad P<L_{12}$
 $\longmapsto \mathcal{H}=\sum^{P} \mathcal{H}_{p} \quad\left(\right.$ sum of P TOTs of rank $\left.L_{2}\right) \quad \begin{aligned} & \text { TOT of rank } L_{2} \\ & \text { (no approximation) }\end{aligned}$
$\mathbf{h}(L) \Rightarrow \mathbf{h}_{2}^{l}\left(L_{2}^{2}\right) \& \mathbf{h}_{12}^{l p}\left(P L_{12}\right) \& \mathbf{h}_{11}^{l p}\left(P L_{11}\right) \quad L_{2} \ll L_{11} L_{12}, \quad P \ll L_{12}$
$L=L_{11} L_{12} L_{2} \quad \rightarrow \quad L_{2}{ }^{2}+P L_{11}+P L_{12} \quad$ (reduced number of parameters)

RLS Based on TOT

- Goal: "extract" / "separate" the individual components:

$$
\mathbf{h}_{2}^{l} \quad \& \quad \mathbf{h}_{12}^{l p} \quad \& \quad \mathbf{h}_{11}^{l p} \quad\left(l=1, \ldots, L_{2}, p=1, \ldots, P\right)
$$

- Extraction of $\mathbf{h}_{2}^{l} \quad\left(l=1, \ldots, L_{2}\right)$:

$$
\begin{aligned}
& \mathbf{h}=\sum_{l=1}^{L_{2}} \sum_{p=1}^{P} \mathbf{h}_{2}^{l} \otimes \mathbf{h}_{12}^{l p} \otimes \mathbf{h}_{11}^{l p}=\sum_{l=1}^{L_{2}} \sum_{p=1}^{P}\left(\mathbf{I}_{L_{2}} \otimes \mathbf{h}_{12}^{l p} \otimes \mathbf{h}_{11}^{l p}\right) \mathbf{h}_{2}^{l} \\
& \\
& \quad=\sum_{l=1}^{L_{2}} \sum_{p=1}^{P} \mathbf{H}_{12,11}^{l p} \mathbf{h}_{2}^{l}=\sum_{l=1}^{L_{2}} \overline{\mathbf{H}}_{12,11}^{l} \mathbf{h}_{2}^{l}=\underline{\overline{\mathbf{H}}_{12,11} \underline{\mathbf{h}}_{2}} \\
& \mathbf{H}_{12,11}^{l p}=\mathbf{I}_{L_{2}} \otimes \mathbf{h}_{12}^{l p} \otimes \mathbf{h}_{11}^{l p}, \overline{\mathbf{H}}_{12,11}^{l}=\sum_{p=1}^{P} \mathbf{H}_{12,11}^{l p} \\
& \underline{\underline{\mathbf{H}}}_{12,11}=\left[\begin{array}{lll}
\overline{\mathbf{H}}_{12,11}^{1} & \cdots & \overline{\mathbf{H}}_{12,11}^{L_{2}}
\end{array}\right], \underline{\mathbf{h}}_{2}=\left[\left(\begin{array}{lll}
\left.\mathbf{h}_{2}^{1}\right)^{T} & \cdots & \left(\mathbf{h}_{2}^{L_{2}}\right)^{T}
\end{array}\right]^{T}\right.
\end{aligned}
$$

RLS Based on TOT (cont.)

- Extraction of $\mathbf{h}_{12}^{l p} \& \mathbf{h}_{11}^{l p} \quad\left(l=1, \ldots, L_{2}, p=1, \ldots, P\right)$

$$
\begin{aligned}
\mathbf{h}=\sum_{l=1}^{L_{2}} \sum_{p=1}^{P} \mathbf{h}_{2}^{l} \otimes \mathbf{h}_{12}^{l p} \otimes \mathbf{h}_{11}^{l p} & =\sum_{l=1}^{L_{2}} \sum_{p=1}^{P}\left(\mathbf{h}_{2}^{l} \otimes \mathbf{I}_{L_{12}} \otimes \mathbf{h}_{11}^{l p}\right) \mathbf{h}_{12}^{l p}=\ldots=\underline{\overline{\mathbf{H}}}_{2,11} \underline{\underline{\mathbf{h}}}_{12} \\
& =\sum_{l=1}^{L_{2}} \sum_{p=1}^{P}\left(\mathbf{h}_{2}^{l} \otimes \mathbf{h}_{12}^{l p} \otimes \mathbf{I}_{L_{11}}\right) \mathbf{h}_{11}^{l p}=\ldots=\underline{\overline{\mathbf{H}}}_{2,12} \underline{\mathbf{h}}_{11}
\end{aligned}
$$

- Notation: \mathbf{g}_{*} and $\mathbf{G}_{*} \rightarrow$ estimates of \mathbf{h}_{*} and \mathbf{H}_{*}, respectively $e(n)=d(n)-\mathbf{g}^{T}(n-1) \mathbf{x}(n) \quad \Longrightarrow$ Least-squares (LS) criterion

RLS Based on TOT (cont.)

- LS cost functions \quad Normal equations

$$
\begin{aligned}
& J\left(\underline{\mathbf{g}}_{2} \mid \underline{\underline{\mathbf{g}}}_{12}, \overline{\mathbf{g}}_{11}\right) \longmapsto \mathbf{R}_{12,11}(n) \underline{\mathbf{g}}_{2}(n)=\mathbf{r}_{12,11}(n) \longmapsto \underline{\mathbf{g}}_{2}(n) \\
& \left\{\left(\overline{\mathbf{g}}_{12} \mid \underline{\mathbf{g}}_{2}, \overline{\mathbf{g}}_{11}\right) \longleftrightarrow \mathbf{R}_{2,11}(n) \underline{\mathbf{g}}_{12}(n)=\mathbf{r}_{2,11}(n) \quad \underline{\mathbf{g}}_{12}(n)\right. \\
& J\left(\underline{\mathbf{g}}_{11} \mid \underline{\mathbf{g}}_{2}, \overline{\mathbf{g}}_{12}\right) \longleftrightarrow \mathbf{R}_{2,12}(n) \underline{\underline{\mathbf{g}}}_{11}(n)=\mathbf{r}_{2,12}(n) \quad \underline{\underline{\mathbf{g}}}_{11}(n) \\
& \rightarrow \text { RLS adaptive algorithm using TOT decomposition } \\
& \text { (RLS-TOT) }
\end{aligned}
$$

- Final estimate:

Advantages

- smaller data structures (matrices)
$\mathbf{g}(n)=\sum_{l=1}^{L_{2}} \sum_{p=1}^{P} \mathbf{g}_{2}^{l}(n) \otimes \mathbf{g}_{12}^{l p}(n) \otimes \mathbf{g}_{11}^{l p}(n) \begin{aligned} & \text { - faster convergence/tracking } \\ & \text { - lower computational complexity }\end{aligned}$

Simulation Results

- Conditions:
$\rightarrow \mathbf{h}$ from ITU-T Rec. G168, with $L=512$.
\rightarrow TOT decomposition: $L_{11}=L_{12}=16, L_{2}=2$
$\rightarrow \mathbf{h}$ acoustic impulse response, with $L=2048$.
\rightarrow TOT decomposition: $L_{11}=L_{12}=32, L_{2}=2$
\rightarrow input signal - AR(1) process with pole at 0.8 / speech sequence \rightarrow additive noise - white Gaussian noise, with SNR $=20$ or 10 dB .
\rightarrow performance measure: normalized misalignment (dB).
- Algorithms:

$$
20 \log _{10}\left[\|\mathbf{h}-\mathbf{g}(n)\|_{2} /\|\mathbf{h}\|_{2}\right]
$$

\rightarrow conventional RLS
\rightarrow RLS-TOT
\rightarrow RLS-NKP / APA / DR-FRLS (see the references [6] / [12] / [13])

Simulation Results (cont.)

Figure 1. Complexity order of the conventional RLS algorithm and RLS-TOT for two impulse responses, with lengths (a) $L=512$ and (b) $L=2048$.

Simulation Results (cont.)

Figure 2. Misalignment of the RLS-based algorithms for the identification of a network impulse response of length $L=512$. The forgetting factors are set based on equation (4), using $K=5$ for the conventional RLS algorithm, and $K=45$ for the RLS-NKP and RLSTOT. The input signal is an $\mathrm{AR}(1)$ process and $\mathrm{SNR}=20 \mathrm{~dB}$.

Simulation Results (cont.)

Figure 3. Misalignment of the APA, DR-FRLS algorithm, and RLS-TOT, for the identification of an acoustic impulse response of length $L=2048$. The RLS-TOT uses two forgetting factors set based on equation (4), with $K=100$, while the third one is equal to 1 . The input signal is speech and $\mathrm{SNR}=10 \mathrm{~dB}$.

Simulation Results (cont.)

Figure 4. Impulse responses related to the experiment reported in Figure 3: (a) true acoustic impulse response \mathbf{h}; (b) the estimate obtained by APA using the step-size equal to 1 ; (c) the estimate obtained by DR-FRLS using the data-reuse parameter equal to 12 ; and (d) the estimate obtained by RLS-TOT using $P=8$.

Conclusions and Perspectives

- System identification exploiting a third-order tensor (TOT) decomposition.
- Efficient solution for the identification of long-length low-rank systems (e.g., echo paths).
- High-dimension system identification problem \rightarrow reformulated as a combination of low-dimension solutions (three shorter filters).
- Solution: RLS adaptive filter based on TOT \rightarrow RLS-TOT.
- The RLS-TOT outperforms the conventional RLS and other RLS-based algorithms (faster convergence/tracking \& lower computational complexity).
- Future works: - dichotomous CD (DCD) \rightarrow reduce complexity.
- extension to multidimensional case \rightarrow higher-order tensors.
- improved versions with variable forgetting factors and variable regularization parameters.

ACKNOWLEDGMENT

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, project number PN-III-P4-PCE-2021-0438, within PNCDI III.

