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Introduction

• RLS adaptive filter system identification

solution of a linear system of equations

• Conventional RLS algorithm � high complexity

• Challenge � identification of long length impulse responses
(e.g., network/acoustic echo paths)
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large matrix � complexity / numerical issues

• Decomposition-based approach smaller matrices

faster convergence, lower complexity

• In this paper: RLS adaptive filter using nearest Kronecker

product (NKP) and third-order tensor decomposition 

(TOT) of the impulse response

(e.g., network/acoustic echo paths)



! Solution for long-length filters:

� decomposition of impulse responses  (⊗� Kronecker product)

Nearest Kronecker Product (NKP) Decomposition

• Impulse response h of length L = L1L2

• Low-rank systems (e.g., echo paths):
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• Decomposition-based approach:
� reformulating a high-dimension system identification 
problem as a combination of low-dimension solutions.

decomposition parameter (estimate)

[Paleologu, Benesty, Ciochină, “Linear system identification based on a Kronecker 

product decomposition,” IEEE Trans. Audio, Speech, Language Process., 2018]

L = L1L2  � PL1+ PL2



NKP Decomposition (cont.)

• Impulse response h of length L = L1L2

L1 L1 ……… L1L1

1 2 3 ……… L2

• Reshape vector  h   � H - matrix L1 x L2

5

L1 L1 L1 … L1

1      2     3     ...    L2

…

…

“full-rank”

“low-rank”

1     2     3      ...    L2

• NKP  singular value decomposition (SVD) of H

(L2)

(P << L2)



Third-Order Tensor (TOT) Decomposition

• Impulse response h of length L = L1L2L3

• Reshape vector  h   � HHHH – third-order tensor L1 x L2 x L3
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• ! Finding the rank of a TOT is a challenging task

• ! Challenge: avoiding approximation techniques

L2 L1L L3

[Benesty, Paleologu, Ciochină, “Linear system identification based on a third-order 

tensor decomposition,” IEEE Signal Processing Letters, 2023]



TOT Decomposition (cont.)
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• Impulse response h of length L = L1L2 with L1 >> L2 and L1 = L11L12
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TOT of rank L2

(no approximation)
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• Goal: “extract” / “separate” the individual components: 
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RLS Based on TOT
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• Extraction of 

• Notation: g and G � estimates of h and H , respectively

RLS Based on TOT (cont.)
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• Notation: g* and G* � estimates of h* and H*, respectively
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RLS Based on TOT (cont.)
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• LS cost functions Normal equations
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� RLS adaptive algorithm using TOT decomposition

(RLS-TOT)

Advantages

- smaller data structures (matrices)

- faster convergence/tracking

- lower computational complexity( ) ( ) ( ) ( )
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Simulation Results

• Conditions:

� h from ITU-T Rec. G168, with L = 512.

� TOT decomposition: L11 = L12 = 16, L2 = 2

� h acoustic impulse response, with L = 2048.

� TOT decomposition: L11 = L12 = 32, L2 = 2

� input signal – AR(1) process with pole at 0.8 / speech sequence� input signal – AR(1) process with pole at 0.8 / speech sequence

� additive noise – white Gaussian noise, with SNR = 20 or 10 dB.

� performance measure: normalized misalignment (dB).

( )10 22
20log /n −
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• Algorithms:

� conventional RLS

� RLS-TOT

� RLS-NKP / APA / DR-FRLS (see the references [6] / [12] / [13])
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Simulation Results (cont.)
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Figure 1. Complexity order of the conventional RLS algorithm and RLS-TOT 

for two impulse responses, with lengths (a) L = 512 and (b) L = 2048.



Simulation Results (cont.)
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Figure 2. Misalignment of the RLS-based algorithms for the identification of a network 

impulse response of length L = 512. The forgetting factors are set based on equation (4), 

using K = 5 for the conventional RLS algorithm, and K = 45 for the RLS-NKP and RLS-

TOT. The input signal is an AR(1) process and SNR = 20 dB.



Simulation Results (cont.)
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Figure 3. Misalignment of the APA, DR-FRLS algorithm, and RLS-TOT, for the 

identification of an acoustic impulse response of length L = 2048. The RLS-TOT uses two 

forgetting factors set based on equation (4), with K = 100, while the third one is equal to 1. 

The input signal is speech and SNR = 10 dB.



Simulation Results (cont.)
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Figure 4. Impulse responses related to the experiment reported in Figure 3: (a) true acoustic 

impulse response h; (b) the estimate obtained by APA using  the step-size equal to 1; (c) the 

estimate obtained by DR-FRLS using the data-reuse parameter equal to 12; and (d) the 

estimate obtained by RLS-TOT using P = 8.



Conclusions and Perspectives

• System identification exploiting a third-order tensor (TOT) 

decomposition.

• Efficient solution for the identification of long-length low-rank

systems (e.g., echo paths).  

• Solution: RLS adaptive filter based on TOT � RLS-TOT.

• High-dimension system identification problem � reformulated as 

a combination of low-dimension solutions (three shorter filters).

• The RLS-TOT outperforms the conventional RLS and other 

RLS-based algorithms (faster convergence/tracking & lower 

computational complexity). 

• Solution: RLS adaptive filter based on TOT � RLS-TOT.
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• Future works: - dichotomous CD (DCD) � reduce complexity.

- extension to multidimensional case � higher-order tensors.

- improved versions with variable forgetting factors and variable 

regularization parameters.
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