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Objectives

• estimation theory is important even at the age of machine learning

→ best possible, interpretable, computationally efficient (usually)

• understanding estimation of time-invariant parameters is a good start

→ then move on to time varying parameters i.e. signals

• review fundamental principles of parameter estimation

→ many topics not covered

Outline

• general estimation of random and
non-random parameters

• linear estimation of random and non-
random parameters
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Big Picture

Systems appear random

• uncertainty

• complexity

• limited knowledge

• measurement noise

→ statistical description

→ random variables and processes

Statistical analysis

• descriptive inferences

→ parametric and non-parametric statistics

• statistical inferences

→ model-based and model-free

• causal inferences

→ cause-effect relationships
observations

inferences

causality

di
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lty

Key factors

• what is known, available measurements, task/application, batch or streaming
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Statistical Inference
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Two types of problems

• Detection: hypothesis testing, “Which value from the set?”

• Estimation: point estimation, “How big is the value?”

→ also interval estimation, posterior estimation etc.

Invert mapping?

• may not be easy to obtain

• not optimum, may amplify measurement noise
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Parameter Estimation

estimator
optimality

to be estimated
Type of parameters

Criterion of

structure
Estimator

Estimates

General
estimation

Linear
estimation

Non−random
parametersparameters

RandomNon−random
parametersparameters

Random

Parameters to be estimated

• parameters are unknown, so must be estimated

• if their prior distribution is known, they appear as being random

• no prior distribution, treat them as non-random (deterministic)

• often only some statistics known (mean and variance)

Estimator structure

• general (unconstrained)

• linear (linear filter)
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General Estimation of Random Parameters

P̂(X) µ(P̂(X),P)
applicationestimator

parameter
estimate

system
P X(P)

(observed)
measured

value
parameter estimation error

quantification of

Requires

• knowing prior fP(p) or PrP(p)

• knowing statistical dependence of X on P: fX|P(x|p) or PrX|P(x|p)

• quantifying the estimation error (P̂−P) as µ(P̂,P)

Optimum estimator

• minimize the risk EX,P

[

µ(P̂(X),P)
]

P̂opt = argminP̂(x) EX,P

[

µ(P̂(x),P)|X = x
]

• Minimum Mean Square Error (MMSE):

EX,P

[

(P̂(X)−P)2
]

P̂MMSE(x) = EP[P|X = x] =

∫

{P}

p fP|X(p|x)dp
(P̂−P)0

µ(P̂,P) = (P̂−P)2
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General Estimation of Random Parameters (cont.)

Properties of MMSE estimator

• it is unbiased

• estimation error uncorrelated with any function of X (orthogonality)

Gauss-Markov theorem

• P is vector of parameters, X is vector of measurements

• if P and X are jointly Gaussian with means P̄ and X̄, and the covariance
matrices var[P] and var[X], then

P̂MMSE(x) = P̄+H(x− X̄) where H = cov[P,X]var−1[X]

Nuisance parameters

• estimated and then ignored, or averaged out

Maximum a posteriori probability (MAP) estimator

• for discrete P: µ(P̂,P) = 1, if P̂ , P, and 0 otherwise

• then the risk is equal to the probability of error

P̂MAP(X) = argmaxpi
Pr(P = pi|X = x)
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General Estimation of Non-Random Parameters

E{µ(P̂(X),P)}
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Caveat

• the estimator may not exist, or is difficult to find

Minimum Variance Unbiased (MVUB) estimator

• unbiased and minimizes the MSE equal to variance of P̂

Cramer-Rao lower bound

• lower bounds variance of unbiased estimator of non-random parameter

• the lower bounds is achieved by efficient estimators

• for consistent estimators, variance decreases with # measurements

• idea:

allow a small bias to further reduce the variance?
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General Estimation of Non-Random Parameters (cont.)

Maximum Likelihood (ML) estimator

P̂ML(X) = argmaxP̂ fX(x, P̂) or P̂ML(X) = argmaxP̂ PrX

(

X = x, P̂
)

Properties of ML estimator

• if efficient estimate exists, then it is ML estimate

• if efficient estimate does not exists, then ML estimate is neither guaranteed
to have minimum variance, nor to be unbiased

• asymptotically unbiased and efficient, and invariant to any function g(P)

Least Squares (LS) estimation of non-random parameter

• if cannot obtain distribution of measurements, but can approximate X ≈ g(P)

• LS estimator corresponds to ML estimator if noise is AWGN

P̂opt(X) = argminP̂µ

(

X,g(P̂)
)

, µ

(

X,g(P̂)
)

=

N
∑

i=1

vi

(

Xi−g(P̂)
)2

Statistical moments based estimation

• no regard to optimality, but simple and low complexity

• unbiased and consistent estimate of the n-th moment: ĝn(P) = 1
N

∑N
i=1 xn(i)

• the estimate is the inverse

P̂ = g−1
n


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Linear Estimation

Advantage

• easy to implement (linear filter)

• only knowledge of basic statistics required

Linear MMSE estimator

• cf. Gauss-Markov theorem

Properties of LMMSE estimator

• it is unbiased

• estimation error and measurements are uncorrelated (orthogonality)

• estimation error and estimates are uncorrelated

• if the estimator is linear, unbiased and orthogonal, then it is LMMSE

Non-random parameters

• for linear estimator that is also unbiased

P̂ =H(X− r), where X̄ = DP+ r, and, HD = I

• Best Linear Unbiased Estimator (BLUE) minimizes covariance matrix of

estimation error
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Estimating Time-Varying Parameters

tb
te

t0 t0 t0 t

extrapolation interpolation filtering extrapolation

x(t)

Tasks

• extrapolation: t0 < tb or t0 > te

• interpolation: tb ≤ t0 < te

• filtration: t0 = te

Wiener filter

• X(t) and P(t) are stationary
and Gaussian

• auto-covariances and cross-
covariance of X(t) and P(t) known

• LMMSE of P(t)

Kalman filter

• generalizes Wiener filter to non-
stationary Gaussian signals

• fast adaptation to changes
in statistics

• several modifications for
non-Gaussian signals
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Take-Home Messages

Key points

• well-established and understood

• estimators are optimum, interpretable, computationally efficient

• general and linear estimators

• estimating random and non-random parameters

Machine learning

• more universal, no assumptions

• replace model with labeled samples

• exchange efficiency and interpretability for performance

⇒ need for incorporating ideas from estimation theory

In the paper

• more details

• more explanations

• number of examples

• list of textbooks

Topics not covered

• statistical filtering

• Bayesian inference

• adaptive estimation

• interval estimation
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