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Introduction

Neutron radiography (NR)

Fg: 1. a) Sketch map of NR system. b) Line slices of a NR data

NR provides invaluable and complementary information to flash X/γ-ray

radiography

Blur and noise in NR/FXR systems are introduced by components of

the imaging system, and this in turn produces compositions of distribu-

tions for their models

Heavy-tailed very impulsive components must be taken into ac-

count for better radiograph modeling
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Introduction

Cauchy (or Cauchy-Lorenz) distribution with PDF

pc(y;µ, σ2) =
σ

π(σ2 + |y − µ|2)
, (1)

where σ > 0 and µ ∈ R are known as distance or scale parameter and

localization parameter, respectively.

Cauchy distribution:

widely used to simulate the impulsive behavior appeared in various imag-

ing applications (e.g. SAR, RS);

utilized to depict the radiation response in FXR;

If X,Y ∼ N(0, 1), then Z = X
Y
∼ PC(0, 1); If X ∼ PC(0, 1), then EXr

does not exist for r ≥ 1;

NOTORIOUS for the undesirable attributes of possessing an unde-

fined mean and an infinite variance.
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Introduction

Fg: 2.PDFs of standard Gaussian, S-Cauchy, Cauchy,and Laplace distribu-

tions (Log domain)

Square Cauchy (S-Cauchy) distribution:

PDF is

psc(y;µ, σ2) =
2σ3

π(σ2 + |y − µ|2)2
(2)

possesses the first and second moments; similar to Cauchy or

Laplace distribution, while it has the highest density at the center

more appropriate to characterize the impulsive outliers with lower

frequency or in a sparser way
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New wine in a old bottle

Data model:

f = Poisson(k ∗ u+ b) + w
.
= z(u, k) + w, (3)

z ∼ PU,KZ (k ∗ u+ b), w ∼ PSC(0, σ2
w) (4)

with PDFs

pu,kz (z;Bu+ b) =
(Bu+ b)ze−(Bu+b)

z!
, z ≥ 0 (5)

and

psc(w; 0, σ2
w) =

2σ3

π(σ2
w + |w|2)2

, (6)

where f is a noisy blurred image, u is the source image, Bu ≡ k ∗ u,

k is the convolution kernel, b is a background constant, σ2
w > 0 is the

unknown parameter of S-Cauchy density.
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A = I

Problem to be studied
Our denoising problem is to recover u from a MPsC noisy data f with

unknown parameter σ2
w.

The data model is reduced to

f = z(u) + w (7)

z ∼ PUZ (u+ b), w ∼ PSC(σ2
w) (8)

with PDFs

puz (z;u+ b) =
(u+ b)ze−(u+b)

z!
, z ≥ 0 (9)

and

psc(w; 0, σ2
w) =

2σ3

π(σ2
w + |w|2)2

. (10)
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A = I

Proposed Model: MPsC-TV 1,α

The amplitude varying Gaussian PDF is

pavg(y;u+ b) =
(u+ b)β

C
exp

(
−|y − (u+ b)|2

2(u+ b)

)
, (11)

where β > 0 is a parameter, C > 0 is the normalization constant.

Utilizing the MAP procedure, we get the following optimization model

min
u,w,σ2

w

E(u,w, σ2
w) = Ψ(u,w) + Φ(w, σ2

w) +R(∇u,∇αu) (12)

where

Ψ(u,w) =

∫
Ω

(
|u+ b+ w − f |2

2(u+ b)
− β log(u+ b)

)
dx, (13)

Φ(w, σ2) =

∫
Ω

(2 log(σ2 + |w|2)− 3

2
log(σ2

w))dx, (14)

R(∇u,∇αu) =

∫
Ω

g1|∇u|dx +

∫
Ω

g2|∇αu|, gi(x) > 0, i = 1, 2, (15)

α ∈ (1, 2].
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MPS-TV1,α model

Four directional fractional-order GL gradient ∇αu
The discrete fractional-order gradient transform of u is defined as

∇αu = (Dαxu,D
α
y u,D

α
d u,D

α
b u)T .

= (Dα1 u,D
α
2 u,D

α
3 u,D

α
4 u)T, (16)

where Dαi u, i = 1, 2, 3, 4 represents fractional-order along horizontal, vertical,

diagonal, and back diagonal direction approximated byD
α
xu(i, j) =

∑K−1
k=0 (−1)kCαk u(i− k, j)

Dαy u(i, j) =
∑K−1
k=0 (−1)kCαk u(i, j − k)

(17)

D
α
d u(i, j) = 2−

α
2
∑K−1
k=0 (−1)kCαk u(i− k, j − k)

Dαb u(i, j) = 2−
α
2
∑K−1
k=0 (−1)kCαk u(i− k, j + k),

(18)

Here K refers to the number of signals involved in the computation of the

fractional-order derivative, and the coefficients {Cαk }
K−1
k=0 are given by

Cαk =
Γ(α+ 1)

Γ(k + 1)Γ(α+ 1− k)

with the Gamma function Γ(x).
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MPS-TV1,α model

The discrete four directional fractional-order (FOTV4) of u is defined as

‖∇αu‖1 :=
∑
i,j

√√√√ 4∑
i=1

|Dαk ui,j |2. (19)

According to the relation that (∇α)∗ = ¯(−1)αdivα, the discrete four directional

fractional-order divergence divαp for p = (p(1), p(2), p(3), p(4)) is formulated by

(divαp)i,j = (−1)α
K−1∑
k=0

(−1)kCαk

(
p

(1)
i+k,j + p

(2)
i,j+k + 2−

α
2 (p

(3)
i+k,j+k + p

(4)
i+k,j−k)

)
.

(20)

In the discrete setting, The regularization term is

∑
i,j

g1

(
2∑
k=1

(Dkui,j)
2

)1/2

+
∑
i,j

g2

(
2∑
k=1

(Dαk ui,j)
2

)1/2

, (21)

where (D1u,D2u) = (Dxu,Dyu) is defined by common forward difference op-

erators.
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Convexity

Lemma

Let Ω be an open bounded subset of R2 with |Ω| =
∫

Ω
1dx. Assume that

σ2 > 0, u ≥ 0, b > 0, w ∈ L4(Ω). u ∈ BV αg (Ω) with u ≥ 0. gi is

a continuous function on Ω, and is bounded below from zero. Then the

functional E(u,w, σ2) is strictly convex W.R.T. u. Moreover, if there

holds
u+ b

2
≤ σ2 ≤ 3 + 2

√
3

|Ω|

∫
Ω

|w|4dx, (22)

then the functional E(u,w,Θ) is convex W.R.T. the variables σ2 and w.

BV αg (Ω) = {u ∈ L1(Ω)|TV αg (u) <∞, g(x) > 0, x ∈ Ω} (23)

TV αg (u) :=

∫
Ω

g|∇αu| = sup
φ∈Hg

∫
Ω

(−udivαφ)dx, (24)

Hg := {φ ∈ L`0(Ω,Rd) : |φ| ≤ gfor allx ∈ Ω}. (25)
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MPS-TV1,α model

Numerical framework: BCD-ADMM based algorithm

Following the convexity of our proposed model, we can solve it numerically by

block coefficient descent (BCD) method of the Gauss-Seidel type. More

specifically, it can be solved by this iterative algorithm:

Choose initial guesses for u0, w0 and (σ2)0. For v = 0, 1, 2, · · · , do


uv+1 = arg minu E(u,wv , (σ2

w)v),

wv+1 = arg minw E(uv+1, w, (σ2
w)v),

(σ2
w)v+1 = arg minσ2

w
E(uv+1, wv+1, σ2

w).

(26)

Check the convergence, if converged, stop; else goto the first subproblem.

Moreover, a variable splitting and the alternating direction method of

multipliers (or ADMM) are combined with the Cardano formula (CF)

and anisotropic diffusion to gain computation efficiency and detail preservation.
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BCD-ADMM algorithm: Updating of w

We turn to consider the minimization problem

min
w

{∫
Ω

|w − (f − uv+1 − b)|2

2(uv+1 + b)
dx + 2

∫
Ω

log
(
(σ2)v + |w|2

)
dx

}
. (27)

For concision, we omit the superscripts and reformulate the integrand to a

function q : R→ R:

q(w) = 2 log(w2 + σ2) +
|w + u+ b− f |2

2(u+ b)
. (28)

The function q is strictly convex for 2σ2/(u+ b) > 1, which implies that there

has a unique solution to solve the minimization problem. We then consider the

solvability of its optimality condition q′(w) = 0, that is,

4w

w2 + σ2
+
w + u+ b− f

u+ b
= 0, (29)

or equivalently, a cubic equation as follows:

w3 +Bvw
2 + Cvw +Dv = 0, (30)

where Bv = u+ b− f , Cv = 4(u+ b) + σ2, Dv = Bvσ2.
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BCD-ADMM algorithm: Updating of w

The cubic equation can be solved explicitly by the Cardano formula (CF).

Substituting g − Bv
3

for w in (30), we have that

g3 + p̃g + q̃ = 0, (31)

where

p̃ = Cv −
B2
v

3
, q̃ = Dv −

BvCv

3
+

2B3
v

27
. (32)

Utilizing the CF approach, we can derive the roots of Eq. (31) as follows:

g1 =
3

√
−
q̃

2
+♦+

3

√
−
q̃

2
−♦ .

= ξ + ζ,

g2 = ωξ + ω2ζ, g3 = ω2ξ + ωζ,

(33)

where ω = exp( 2πi
3

), i2 = −1, and

♦ .
=

√
(
p̃

3
)3 + (

q̃

2
)2. (34)

And thus, if ♦ > 0, the unique real valued root of Eq. (30) is ḡ1 = g1 − Bv
3

,

and the minimizer of the subproblem is given by

wv+1 = ξ + ζ −
Bv

3
. (35)
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BCD-ADMM algorithm: Updating of σ2
w

Given wv+1. To calculate (σ2
w)v+1, we consider ∂Φ

∂σ2
w

= 0, which implies that

∫
Ω

σ2
w − 3|wv+1|2

σ2
w(|wv+1|2 + σ2

w)
dx = 0. (36)

According to Proposition, there exists an iteration solving (36). We reuse

(σ2
w)v to denote the iterative sequence, which converges to σ̃2

w. Then we are

more or less solving equation

∫
Ω

σ2
w − 3|wv+1|2

|wv+1|2 + σ̃2
w

dx = 0 (37)

for v being big enough. As σ̃2
w becomes stable, we may approximate the de-

nominator by |wv+1|2 + (σ2
w)v . And thus, we get that

(σ2
w)v+1 =

3
∫
Ω

|wv+1|2
|wv+1|2+(σ2

w)v
dx∫

Ω
1

|wv+1|2+(σ2
w)v

dx
. (38)
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Image denoising: Test1

Fg: 3. Experiment of image denoising. (a) Original cameraman image. (b)

Noisy image, obtained by adding MPC noise to (a). (c) Recovered image

obtained by proposed algorithm with α > 2. (d) Recovered image obtained by

proposed algorithm with α ≤ 2.
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Image denoising: Test2

Fg: 4. Experiment of image denoising. (a) Original moon image. (b) Noisy

image, obtained by adding Poisson noise to (a). (c),(d) Restored images derived

by proposed algorithm with different Kd values.
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Image denoising: Test3

Fg: 5. Experiment of image denoising. (a) Clean astroid image. (b) Noisy

image, obtained by adding truncated Gaussian noise to (a). (c) Restored image

derived by proposed algorithm.
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BID: Lévy-stable distributions

Lévy-stable distributions such as Cauchy and Gaussian distributions play

a significant role in radiograph deblurring and denoising.

We propose a combined 2-dimensional Square Cauchy-Gaussian distri-

bution with PDF

Bk(x; ΘB) =
2∑
i=1

γipi(x;σ2
i ), x ∈ Ω (39)

as prior structure of the kernel, where p1 and p2 are defined by

p1(x;σ2
1) =

σ2
1

π(σ2
1 + |x|2)2

, x ∈ Ω, (40)

and

p2(x;σ2
2) =

1

2πσ2
2

exp

(
−
|x|2

2σ2
2

)
, x ∈ Ω, (41)

respectively, the denotation ΘB represents the set of parameters γ1, γ2, σ2
1 , σ

2
2 .

γi ≥ 0 is a mixture ratio satisfying γ1 + γ2 = 1.
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Prior density of the blur kernel

We then utilize the KL divergence to measure the difference between the un-

known kernel k and the basel structure Bk(x; ΘB), and define a prior constraint

on the blur kernel k as follows:

PK(k) ∝ e−JK(k), (42)

where the functional JK(k) is formulated by

JK(k)(x) = k(x)[ln k(x)− lnBk(x; ΘB)− 1] +Bk(x; ΘB). (43)

Remark
Obviously, Bk(x; ΘB) is a positive symmetric kernel satisfying∫

R2
Bk(x; ΘB)dx = 1.

If γ2 ≡ 0, Bk is reduced to a pure square Cauchy density function. By the

definition of JK(k), it is easy to check that JK(k) is non-negative, convex for

k > 0, and moreover, attains minimum zero at k = Bk(x; ΘB).



Mixture
based

hybrid regu-
larization

method for
blind image
deconvolu-

tion

Introduction

Image
denoising

Blind image
deconvolu-
tion

Conclusion

Infimal convolution-MAP framework

Using Bayes’ rule and independence assumption of the random variables U , K,

and W , we then resort to the joint Bayesian framework to pose the maximum

a posteriori problem

(û, k̂, ŵ) = arg max
(u,k,w)

P (u, k, w|f) = arg max
(u,k,w)

{P (f |u, k, w)P (u, k, w)}

= arg max
(u,k,w)

{
PU,KZ (f − w)PW (w)PU (u)PK(k)

}
(44)

for given f .

Following a routine procedure, we can obtain the following raw problem

min
u,k,w,Θ

{
E(Bu, u, k,w,Θ) ≡ Ψ̃(Bu,w)+Φ(w,σ2

w)+R(∇u,∇αu)+S(k,ΘB)
}

(45)
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MAP based model

with

Ψ̃(Bu,w) =

∫
Ω

(
|Bu+ b+ w − f |2

2(Bu+ b)
− β ln(Bu+ b)

)
dx, (46)

and

Φ(w, σ2
w) =

∫
Ω

(
2 ln(σ2

w + |w|2)−
3

2
ln(σ2

w)

)
dx, (47)

S(k,ΘB) =

∫
Ω
k(x) [ln k(x)− lnBk(x; ΘB)− 1] dx, (48)

R(∇u,∇αu) =

∫
Ω
g1|∇u|dx +

∫
Ω
g2|∇αu|dx. (49)

Remark
S(k,ΘB) is just a variant of the KL divergence from k(x) to BK(x; ΘB):

DKL(k,Bk) =

∫
Ω

[
k(x) ln

(
k(x)

Bk(x)

)
− k(x) +Bk(x)

]
dx. (50)

Obviously, the KL divergence is convex for k > 0.
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Modifications with relaxation

Due to the allowance of both k and u being unknown
variables in (45), the convexity of functional E(Bu, u, ·)
is destroyed, and this makes the joint MAP estimation
difficult.

Due to the non-commutativity of the Log-Sum operation
in the functional S(k,ΘB), the parameters in ΘB are
very complicated to optimize or calculate directly.

To mitigate these drawbacks and gain solvability and
efficiency, we then introduce some modifications W.R.T.
the components Ψ̃(Bu,w) and S(k,ΘB).
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Local estimation

Noting the convexity of the functional Ψ̃ W.R.T. the variable Bu, we introduce

an intermediate variable η to approximate the blurry image Bu, and define an

equivalent functional as follows

Ψ̄(u, k, η, w)=

∫
Ω

(
|η+b+w−f |2

2(η + b)
−β log(η + b)

)
dx+

ε

2

∫
Ω

|k ∗ u− η|2

2(η + b)
dx,

(51)

where ε > 0 is a punishing parameter. Suppose we have uv and kv at the vth

iteration [Liu,Gu,Meng,Lu]. Introduce denotations

H(u, k) = uv ∗ k + kv ∗ u, f̃v = uv ∗ kv . (52)

Substituting the local approximation H(u, k) − f̃v for the blurry image k ∗ u
in (51), we then obtain an alternative functional of the form

Ψ(u, k, η, w;uv , kv) =

∫
Ω

(
|η+b+w−f |2

2(η + b)
−β log(η + b)

)
dx +

ε

2

∫
Ω

|H(u, k)− η − f̃v |2

η + b
dx. (53)
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EM algorithm for calculating ΘB

Noting the integral term
∫
Ω− ln(Bk(x; ΘB))dx in S(k,ΘB) is non other than

the negative Log-likelihood function of the combined Square Cauchy-Gaussian

distribution, we utilize the EM algorithm [Liu,Zhang,Huang,Huan] by intro-

ducing a vector-valued auxiliary variable φ : Ω→ [0, 1]2 with elements (φ1, φ2)

satisfying

φ ∈ ∆ =

{
φ(x) : 0 < φi(x) < 1,

2∑
i=1

φi(x) = 1, ∀x ∈ Ω

}
, (54)

and define an upper bound of the functional as follows:

H(k,ΘB , φ) =

∫
Ω
k(x)

{
ln k(x)−

2∑
i=1

φi ln(γipi(x;σ2
i ))+

2∑
i=1

φi(x) lnφi(x)− 1

}
dx.

(55)
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BID model

For concision, we introduce denotation

Π
.
= {u, k, η, w,Θ, φ}.

Substituting Ψ(u, k, η, w;uv , kv) andH(k,ΘB , φ) for Ψ̃(Bu,w) and S(k,ΘB) in

(46) and (48), respectively, we then propose the following hybrid regularization

model

min
Π

{
E(Π) |= Ψ(u, k, η, w;uv , kv)+R(∇u,Dαu)+H(k,ΘB , φ)+Φ(w, σ2

w)
}

(56)

to address our Poisson BID problem.

Θ = ΘB ∪ {σ2
w} denotes the set of unknown parameters in our model.
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Convexity

Proposition

Let Ω be an open bounded subset of R2 with |Ω| =
∫
Ω 1dx. Assume that σ2

w > 0,

b > 0, η ≥ 0, φ = {φ1, φ2} ∈ ∆. Density function pi is defined by (40) with

σ2
i > 0, γi ≥ 0, i = 1, 2. g1 and g2 are continuous functions on Ω, which are

bounded below from zero. w ∈ L1(Ω) ∩ L4(Ω), 0 ≤ u ∈ BV αg (Ω) [wei,kong].

Also assume that 0 ≤ k ∈ L1(Ω) satisfies k ln k ∈ L1(Ω),
∫
Ω kφ1|x|4dx < +∞,∫

Ω kφ2|x|2dx < ∞. Then the functional E(u, k, η, w,Θ, φ) is convex W.R.T.

each of the variables u, k, η, φi and γi as the others are fixed. Moreover, if

there hold
η + b

2
≤ σ2

w ≤
3 + 2

√
3

|Ω|

∫
Ω
|w|2dx, (57)

and

0 < σ2
1 ≤

(1 +
√

2)
∫
Ω kφ1|x|2dx∫

Ω kφ1dx
, 0 < σ2

2 ≤
∫
Ω kφ2|x|2dx

2
∫
Ω kφ2dx

, (58)

then the functional is also convex W.R.T. the variables w, σ2
w, σ2

i , respectively.
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BCD-ADMM based algorithm: blur kernel
calculation and image restoration

Given uv , kv , ηv , wv , ΘvB , and φv+1. We consider the solution of the primary

problem

(uv+1, kv+1) =arg min
(u,k)

{
A(u, k) +R(∇u,∇αu) +H(k,ΘvB , φ

v+1)
}

(59)

with

A(u, k) =
ε

2

∫
Ω

|H(u, k)− ηv − f̃v |2

ηv + b
(60)

Remark
The functional A(u, k) can be regarded as a variant of traditional reweighted

fidelity corresponding to the mixture of Poisson and Gaussian noises. If ηv ≡
0, it is reduced to the single Gaussian case.
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Updating u

Introduce denotation Aku = kv∗u. We turn to consider the following quadratic

u-subproblem

uv+1 = arg min
u

{∫
Ω

ε|Aku− ηv |2

2(ηv + b)
dx +

1

24t

∫
Ω
|u− uv |2dx+∫

Ω
(
ρd

2
|∇u− dv +

µvd
ρd
|2+

ρh

2
|∇αu− hv +

µvh
ρh
|2)dx

}
(61)

where the proximal term in u is involved to ensure uniqueness as well as effi-

ciency, and4t is a positive constant regarded as scale parameter. The optimal-

ity equation of this subproblem incorporating Neumann boundary conditions

is given by

u−4tdiv(ρd∇u) = T (u), (62)

where the source term T (u) is given by

T (u)=uv−4t
[
εA>k

(
Aku−ηv

ηv + b

)
+div(ρdd

v−µvd)+(−1)αdivα(ρh(∇αu−hv)+µvh)

]
,

(63)

where A>k is the adjoint operator of Ak.
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Updating k

Introduce denotations

gv+1 = f̃v + ηv − uv+1 ∗ kv , Auk = uv ∗ k,

and

F (k) =

∫
Ω

|Auk − gv+1|2

2(ηv + b)
dx. (64)

We then consider the following minimization problem

kv+1 = arg min
k

{
εF (k) +H(k,ΘvB , φ

v+1)
}
. (65)

We consider the expansion of F (k) in a Taylor series around kv , which can

be expressed

F (k) = F (kv) + 〈∇F (kv), k − kv〉+
1

2
〈k − kv ,∇2F (k − kv)〉, (66)

where the Hessian ∇2F = A>u ( Au
ηv+b

), A>u represents the adjoint operator of

Au, 〈·, ·〉 denotes the Euclidean inner product. Since ∇2F can be large and

dense in FXR imaging, we make the approximations ∇2F ≈ δkI, I denotes the

identity matrix, and

F (k) ≈ F (kv) + 〈A>u (
Aukv − gv+1

ηv + b
), k − kv〉+

δk

2
‖k − kv‖22. (67)
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Updating k

Exploiting the Barzilai-Borwein choice for δk, we have

δk = arg min
δ

∥∥∇F (kv)−∇F (kv−1)−δ(kv−kv−1)
∥∥2

2

=
‖Au(kv−kv−1)

ηv+b
‖22

‖kv − kv−1‖22
≤ max
‖kv‖2=1

‖
Aukv

ηv + b
‖22

.
= Lk. (68)

By completing square, the approximate formulation (67) can be rewritten by

F (k) ≈ F (kv)−
1

2δk
‖A>u (

Aukv−gv+1

ηv + b
)‖22+

δk

2
‖k−kv+δ−1

k A>u (
Aukv−gv+1

ηv + b
)‖22.
(69)

With this replacement in (65), we then utilize the majorization-minimization

approach to consider the following minimization problem:

min
k

{
εδk

2

∫
Ω
|k − kv +

1

δk
A>u (

uv+1 ∗ kv − ηv

ηv + b
)|2dx +H(k,ΘvB , φ

v+1)

}
,

(70)

since there holds Aukv − gv+1 = uv+1 ∗ kv − ηv .
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Updating k: A Majorization-Minimization
approach

Introduce denotation

p̄cg(ΘvB , φ
v+1) =

2∑
i=1

φv+1
i ln(γvi pi(x; (σ2

i )v))−
2∑
i=1

φv+1
i lnφv+1

i . (71)

To define the upper bound of H(k,ΘvB , φ
v+1), we utilize the Taylor expansion

of the logarithm around the vth estimate of k up to the first term, and obtain

ψ(k|kv) =

∫
Ω
k[(ln kv +

k − kv

kv
)− p̄cg(ΘvB , φ

v+1)− 1]dx. (72)

According to the concavity of the logarithm function, it is easy to check that

ψ satisfies the following propertiesψ(k|kv) ≥
∫
Ω k[ln k − p̄cg(ΘvB , φ

v+1)− 1]dx

ψ(kv |kv) =
∫
Ω k

v [ln kv − p̄cg(ΘvB , φ
v+1)− 1]dx.

(73)



Mixture
based

hybrid regu-
larization

method for
blind image
deconvolu-

tion

Introduction

Image
denoising

Blind image
deconvolu-
tion

Conclusion

Updating k: A Majorization-Minimization
approach

And thus, by plugging ψ in (65), we obtain the following quadratic minimiza-

tion problem:

min
k

{
εδk

2
‖k − kv+

1

δk
A>u (

uv+1 ∗ kv − ηv

ηv + b
)‖22+∫

Ω
k[
k − kv

kv
+ ln kv − p̄cg(ΘvB , φ

v+1)− 1]dx

}
. (74)

By direct computation, we obtain the following formulation

k̄v+1 = kv

1 +
p̄cg(ΘvB , φ

v+1)− ln kv − εA>u (u
v+1∗kv−ηv
ηv+b

)

2 + εδkkv

 (75)

for updating the blur kernel.
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Numerical tests

Fg: 6.Blind image deconvolution: (a) A noisy blurred image (SSIM=0.4581).

(b) u0, obtained by median filter (SSIM=0.7275). (c) A restored image using

our proposed Algorithm 1 (SSIM=0.9407) with Kd = 0.0075. (d) The restored

blur kernel.
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Numerical tests

Fg: 7.Blind image deconvolution: (a) A noisy blurred image (SSIM=0.3118).

(b) u0, obtained by performing MPsC-TV 1+α model and then enhancing by

L-filter (SSIM=0.6228). (c) A restored image using our proposed Algorithm 1

(SSIM=0.9819). (d) The restored blur kernel.
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Numerical tests

Fg: 8.Blind image deconvolution: (a) A noisy blurred MRI image. (b) A

restored image using our proposed Algorithm 1 with Kd = 0.0025. (c) A

restored image using our proposed Algorithm 1 with Kd = 0.0015.
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Conclusion

Square Cauchy distribution was introduced to ad-
dress the fundamental problems such as denoising and
deblurring in radiograph processing.

Two new mixture models, including mixed Poisson-
(1D) Square Cauchy distribution, and combined
(2D) Square Cauchy-Gaussian distribution, were
utilized to characterize the noise and system blur in NR
or FXR.

Two multi-convex optimization frameworks along with
BCD-ADMM based algorithms were proposed to address
the denoising and blind deblurring problems.
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Thank You for
Your attention!
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