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• Background

• Federated Learning
• Federated Aggregation
• FL tools
• Privacy & Security concerns

• Homomorphic Encryption
• Different types, methods, and schemes
• Open-source libraries
• Standardization efforts

• When these technologies are used 
together

• Conclusion & Future
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Roadmap



Various industries benefit from AI applications

Healthcare Finance Retail

Telecom Manufacturing
Transportation 
and Logistics

Education Agriculture



Challenges related to data sharing compromise 
centralised approach

full control over data quality

data concistency

difficult to update data  

compromised privacy

security risks / one point of 
failure

logistic challenges

storage

all data in single location



Federated approach
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• Google introduced Federated Learning in 2016 
aiming on
• reduction of data transfer costs
• protection of privacy-sensitive information

• enables on-device model training using client 
specific data

• further aggregation of the obtained local model 
updates on a central server

• cross-silo (organizations / jurisdictions) and 
cross-device

• data partitioning: horizontal FL (different sample 
spaces), vertical FL (different feature spaces), 
and hybrid FL

• IEEE Guide for Architectural Framework and 
Application of Federated Machine Learning 
(IEEE 3652.1-2020)



Federated learning enable data analytics across 
different silos

privacy issues are better addressed
logistic
data updates
cross-border cooperation: training of 
models with data coming from different 
jurisdictions

non-iid (independent and identically 
distributed) issues should be addressed, 
increasing complexity in model training 
and aggregation [Ma22, Ka21]
risk of introducing biases; methods for 
ensuring fairness and addressing 
sources of bias 
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Federated aggregation is a key process in 
federated learning

• Federated Stochastic Gradient Descent (FedSGD)

• local gradients

• Federated Averaging (FedAvg)

• most common/communication efficiency

• differs from FedSGD in what/how information is aggregated from the 

local model 

• local stochastic gradient updates from several epochs of training

• averaged weights for updates at the aggregator

• assumption: all devices have an equal contribution to the global model
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Federated aggregation methods, cont.

• Weighted Federated Averaging

• modification of FedAvg

• takes into account the number of data samples on each device

• devices with more data samples have a higher contribution to the global 

model

• Hierarchical aggregation (FogL, MACFL, MaxQ, …)

• across different devices

• aggregates local models from devices closely located together before further 

aggregation on the server

• reduces communication overhead and the number of model transfer rounds
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FL tools

• TensorFlow Federated, Google

• Flower, Flower

• PySyft, OpenMind community

• FedML

• OpenFL

• IBM Federated Learning

• Microsoft's FL 

• Vantage6



Vantage6
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• supported by the Netherlands 
Comprehensive Cancer Organisation
(IKNL)

• designed to facilitate collaborative data 
science / analysis / machine learning, 
cross-silo

• designed to be flexible and modular, 
allows users to create custom algorithms 
for specific tasks

• supports different programming languages 
such as Python and R, robust support for 
handling missing or inconsistent data

• great community support

from https://distributedlearning.ai/



Security & Privacy concerns

• Inference attacks   
• model inversion
• membership inference
• attribute inference

• Data/gradient leakage attacks

• Model/data poisoning 

• Model extraction  

• GAN-based attacks where an attacker   
• trains a GAN model to learn the distribution of the victim’s private dataset based 

on the shared model gradients
• has a high chance to fully reconstruct users’ private data [Hi17]

conference dinner
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Federated Learning can be further integrated with 
privacy-preserving technologies

• Anonymization
• involves removing any identifying information from the data, such as names, 

addresses, or social security numbers 

• helps to protect individuals' privacy, but it's crucial to ensure that the data cannot be re-
identified

• risk of re-identification (K-anonimity, L-diversity, T-closeness)

• Differential Privacy
• adds noise to the data to protect individual privacy while still allowing for overall trend 

analysis

• provides a mathematical guarantee of privacy by ensuring that the addition or removal 
of a single database entry does not significantly change the output of a data analysis
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Privacy-preserving technologies, cont.

• Trusted Execution Environments

• are secure areas of a main processor 

• ensure that the data being processed is secure, even in the presence of 
a compromised operating system

• are used in a wide range of applications, including secure payment 
applications and authentication

• Data masking

• sensitive data is replaced with fictional yet realistic data 

• allows developers and testers to work with data close to the actual data 
without violating privacy rules
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Secure Multi-Party Computation

• Multiple parties jointly compute a function over their inputs while keeping 
those inputs private 

• Homomorphic encryption 

• allows computations to be performed on encrypted data without 
decrypting it; the decrypted result matches the result of operations 
performed on the plaintext 

• data privacy and trust: protection of data, ML models, model updates 

• preservation of data ownership 

• versatility : can be applied to many types of data and computations

• computationally expensive
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Homomorphic Encryption

• The idea of direct computation on encrypted data was first recognized in 
1978 by Ronald L. Rivest, Len Adelman, and Michael L. Dertouzos

• RSA (Rivest-Shamir-Adleman) encryption

• Partially Homomorphic Encryption (PHE): simplest form of homomorphic 
encryption

• perform one type of operation either addition or multiplication an 
unlimited number of times. The most famous PHE scheme is the RSA 
algorithm, which is a multiplicative homomorphic encryption

• Somewhat Homomorphic Encryption (SHE) 

• perform both addition and multiplication operations, but only up to a 
certain level; the limitation: the noise introduced into the cipher text after 
each operation; grows exponentially with the number of operations  
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Fully Homomorphic Encryption

• Unlimited number of both addition and multiplication operations 

• First practical scheme was proposed by Craig Gentry in 2009 [Ge09]

• defined as a circuit of logic gates, and unrestricted computation 
occurred on encrypted data with results encrypted in the same way 

• extremely slow, taking about 30 minutes to complete a single logic gate 
on standard x86 hardware

• Continued research has resulted in four distinct generations of FHE and 
substantial speed-up on standard hardware platforms

 



Homomorphic Encryption can 
be further classified as:
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• Single key

• single key schemes, all clients use the same 
public-private key pair and can decrypt updates 
from other participants => no different from 
directly sending plaintext 

• Multikey homomorphic encryption

• supports a variable number of clients, the number 
of clients in one operation is bound

• computationally inefficient, key generation is 
expensive, ciphertext expands proportionally to the 
number of clients, runtime - quadratically

• new client can joint 

• Threshold homomorphic encryption 

• relaxes the problem with ciphertext expansion, 
runtime and key generation

• clients are predefined to generate a common 
public key and evaluation keys

• new client cannot joint, requiring new key 
generation  
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Threshold FHE schemes can be separated into three 
categories

• Support SIMD encrypted computations for arithmetic 
circuits modulo a prime power; integer 

Brakerski-Gentry-Vaikuntanathan 
[BGV14] (BGV) and Brakerski 

[Bra12]/Fan-Vercauteren [FV12] 
(BFV) 

• Support binary or small-precision arithmetic ; arbitrary 
functions are evaluated using lookup tables via 
functional/programmable bootstrapping; integer 

Ducas-Micciancio [DM15] (DM, 
also called FHEW)/Chillotti-Gama-

Georgieva-Izabachene [CGGI16] 
(CGGI, also called TFHE) 

• Support SIMD fixed-point-like arithmetic circuits (for 
many real-number applications) , includes approximate 
bootstrapping

Cheon-Kim-Kim-Song [CKKS17] 
(CKKS, also called HEAAN)

based on LWE/RLWE/MLWE , lattice-based cryptography, known to be quantum 
resistant 



Open-Source Fully Maintained Libraries

• OpenFHE (former PALISADE)

• Duality Technologies

• C++ and Python bindings (Linux)

• Threshold FHE for BGV, BFV, and CKKS schemes

• Strong community support

• Lattigo: lattice-based multiparty homomorphic encryption library 

• The EPFL Laboratory for Data Security (2019-2022), Tune Insight SA (2022-)

• Go 

• Threshold FHE for BFV, BGV, and CKKS schemes  

• TFHE-rs

• Rust

• Zama.ai, community support

• working on threshold FHE solutions, but not in the library
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“Homomorphic encryption is already ripe for mainstream 
use, but the current lack of standardization is making it 
difficult to start using it.” [HES]

ISO standardization  

• Targeting BGV, BFV, CKKS, and CGGI

• Technical Committee : ISO/IEC JTC 1/SC 27 Information security, cybersecurity and 
privacy protection

Homomorphic Encryption Standardization / HomomorphicEncryption.org 

• open consortium of industry, government and academia to standardize homomorphic 
encryption 

• founded in 2017  

• 6 meetings held since 2017, next meeting: Sunday October 13, 2024

• security recommendations are available since 2018

NIST Workshops on Multi-Party Threshold Schemes  



Threshold FHE representative scenario in the 
context of FL

• Each participant has some secret data

• Key generation routine is done for all participants

• participants generate their secret key shares and jointly generate 
evaluation and public keys

• evaluation key is sent to the central server

• An initial FL model is trained and sent to all participants

• Each participant evaluates the function, computes and encrypts model 
updates, sends the result to the central server

• The central server aggregates received updates

• Participants jointly decrypt the result

• A participant joins or leaves the group: new key generation routine  
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HE in Federated Learning  

• supports only additions and multiplications

• polynomial functions can be implemented in a straightforward way

• averages, weighted-sum functions can be directly implemented, inverse 
function / Taylor series

• some schemes do not support floating-point numbers: convert real numbers 
to integers by proper scaling

• sigmoid and rectified linear activation (ReLU) functions are non-polynomial 
functions: approximate these functions with low-degree polynomials or 
replace them with polynomial activation functions (for models)
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HE in Federated learning, contd  

• communication overhead

• higher with HE, generation of keys, joint decryption

• scalability is challenging for cross-device FL 

• involve up to millions of devices 

• more challenging using HE

• cross-silo vs cross-device – different requirements

• model quality

• non-iid issues

• biases

• integration issues
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Conclusion
• Federated Learning presents a promising approach to machine learning and 

data analysis

• reduces the amount of data that needs to be transmitted and 
strengthens protection of  sensitive data

• robust AI models without the necessity of transferring raw data across 
the network

• Homomorphic encryption enhances data privacy and security in machine 
learning and AI 

• allows for private computation and protects data even if the computing 
environment is compromised 

• threshold HE: lattice-based schemes considered to be post-quantum 
resistant
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There are still challenges and future steps to 
consider

• Efficiency and Performance: Federated Learning and Homomorphic 
Encryption require significant computational resources and can be slower 
than traditional methods. Future research should focus on improving 
efficiency and performance, making these technologies more practical for 
widespread use.

• Scalability: As the number of devices and the amount of data grows, it will be 
a challenge to scale these technologies. Research is needed to develop 
methods for scalable, decentralized learning and efficient homomorphic 
encryption.
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There are still challenges and future steps to 
consider, cont. 

• Standards and Regulations: As new technologies, standards and regulations 
for Federated Learning and Homomorphic Encryption are still being 
developed. It will be important to establish guidelines for their use to ensure 
privacy and security.

• Integration with Existing Systems: These technologies will need to be 
integrated with existing systems. This will require new tools and 
methodologies, as well as education and training for users.
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Thank you!
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