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« Her areas of interest include cybersecurity, privacy and data
protection, secure multi-party computation, and federated
learning.



Roadmap

Background

Federated Learning
« Federated Aggregation
« FL tools
« Privacy & Security concerns

Homomorphic Encryption
« Different types, methods, and schemes
« Open-source libraries
« Standardization efforts

When these technologies are used
together

Conclusion & Future
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Various industries benefit from Al applications

@ Healthcare Finance Retail
@ Telecom @ Manufacturing @
@ Education

Transportation
and Logistics

Agriculture




Challenges related to data sharing compromise

centralised approach
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all data in single location
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full control over data quality
data concistency

difficult to update data
compromised privacy

security risks / one point of
failure

logistic challenges
storage



Federated approach

Google introduced Federated Learning in 2016
aiming on

* reduction of data transfer costs
« protection of privacy-sensitive information

enables on-device model training using client
specific data

further aggregation of the obtained local model
updates on a central server

cross-silo (organizations / jurisdictions) and
cross-device

data partitioning: horizontal FL (different sample
spaces), vertical FL (different feature spaces),
and hybrid FL

IEEE Guide for Architectural Framework and
Application of Federated Machine Learning
(IEEE 3652.1-2020)
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Federated learning enable data analytics across

different silos

distributed data

e

=

o

=

o privacy issues are better addressed
logistic
© data updates

cross-border cooperation: trainin_gi] of
© models with data coming from different

jurisdictions

non-iid ginde.pendent and identically
distributed) issues should be addréssed,

increasing Co.mplexitg in model training
and aggregation [Ma22, Ka21]

risk of introducing biases; methods for
@ ensuring fairness and addressing
sources of bias



Federated aggregation is a key process in =ENR
federated learning

* Federated Stochastic Gradient Descent (FedSGD)

local gradients

* Federated Averaging (FedAvg)

most common/communication efficiency

differs from FedSGD in what/how information is aggregated from the
local model

local stochastic gradient updates from several epochs of training
averaged weights for updates at the aggregator
assumption: all devices have an equal contribution to the global model
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Federated aggregation methods, cont.

* Weighted Federated Averaging

modification of FedAvg

 takes into account the number of data samples on each device

devices with more data samples have a higher contribution to the global
model

* Hierarchical aggregation (FoglL, MACFL, MaxQ, ...)

across different devices

aggregates local models from devices closely located together before further
aggregation on the server

reduces communication overhead and the number of model transfer rounds

9



=NR
FL tools

« TensorFlow Federated, Google
 Flower, Flower

« PySyft, OpenMind community
 FedML

 OpenFL

* |IBM Federated Learning

« Microsoft's FL

 Vantageb

10



=NR
Vantageb

« supported by the Netherlands
Comprehensive Cancer Organisation
(IKNL)

- designed to facilitate collaborative data
science / analysis / machine learning,
cross-silo

« designed to be flexible and modular,
allows users to create custom algorithms
for specific tasks

« supports different programming languages
such as Python and R, robust support for
handling missing or inconsistent data

« great community support

from https://distributedlearning.ai/

11



=NR
Security & Privacy concerns

Inference attacks
 model inversion
 membership inference
e attribute inference

« Data/gradient Ieaka%e attac

S
conference dinner

« Model/data poisoning
« Model extraction

« GAN-based attacks where an attacker

 trains a GAN model to learn the distribution of the victim’s private dataset based
on the shared model gradients

« has a high chance to fully reconstruct users’ private data [Hi17]



Federated Learning can be further integrated with =NR
privacy-preserving technologies

* Anonymization

involves removing any identifying information from the data, such as names,
addresses, or social security numbers

helps to protect individuals' privacy, but it's crucial to ensure that the data cannot be re-
identified
risk of re-identification (K-anonimity, L-diversity, T-closeness)

« Differential Privacy

adds noise to the data to protect individual privacy while still allowing for overall trend
analysis

provides a mathematical guarantee of privacy by ensuring that the addition or removal
of a single database entry does not significantly change the output of a data analysis

13



=ENR
Privacy-preserving technologies, cont.

 Trusted Execution Environments
« are secure areas of a main processor

« ensure that the data being processed is secure, even in the presence of
a compromised operating system

« are used in a wide range of applications, including secure payment
applications and authentication

« Data masking
» sensitive data is replaced with fictional yet realistic data

« allows developers and testers to work with data close to the actual data
without violating privacy rules

14
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Secure Multi-Party Computation

« Multiple parties jointly compute a function over their inputs while keeping
those inputs private

« Homomorphic encryption

allows computations to be performed on encrypted data without
decrypting it; the decrypted result matches the result of operations
performed on the plaintext

data privacy and trust: protection of data, ML models, model updates
preservation of data ownership

versatility : can be applied to many types of data and computations
computationally expensive

15
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Homomorphic Encryption

The idea of direct computation on encrypted data was first recognized in
1978 by Ronald L. Rivest, Len Adelman, and Michael L. Dertouzos

« RSA (Rivest-Shamir-Adleman) encryption

Partially Homomorphic Encryption (PHE): simplest form of homomorphic
encryption

« perform one type of operation either addition or multiplication an
unlimited number of times. The most famous PHE scheme is the RSA
algorithm, which is a multiplicative homomorphic encryption

Somewhat Homomorphic Encryption (SHE)

« perform both addition and multiplication operations, but only up to a
certain level; the limitation: the noise introduced into the cipher text after
each operation; grows exponentially with the number of operations

16



=NR
Fully Homomorphic Encryption

« Unlimited number of both addition and multiplication operations

» First practical scheme was proposed by Craig Gentry in 2009 [Ge09]

« defined as a circuit of logic gates, and unrestricted computation
occurred on encrypted data with results encrypted in the same way

« extremely slow, taking about 30 minutes to complete a single logic gate
on standard x86 hardware

« Continued research has resulted in four distinct generations of FHE and
substantial speed-up on standard hardware platforms

17



Homomorphic Encryption can
be further classified as:

Single key

single key schemes, all clients use the same
public-private key pair and can decrypt updates
from other participants => no different from
directly sending plaintext

Multikey homomorphic encryption

supports a variable number of clients, the number
of clients in one operation is bound

computationally inefficient, key generation is
expensive, ciphertext expands proportionally to the
number of clients, runtime - quadratically

new client can joint

Threshold homomorphic encryption

relaxes the problem with ciphertext expansion,
runtime and key generation

clients are predefined to generate a common
public key and evaluation keys

new client cannot joint, requiring new key
generation




Threshold FHE schemes can be separated into three =NR
categories

» Support SIMD encrypted computations for arithmetic
circuits modulo a prime power; integer

« Support binary or small-precision arithmetic ; arbitrary
functions are evaluated using lookup tables via
functional/programmable bootstrapping; integer

« Support SIMD fixed-point-like arithmetic circuits (for
many real-number applications) , includes approximate
bootstrapping

based on LWE/RLWE/MLWE, lattice-based cryptography, known to be quantum
resistant 19



=ENR
Open-Source Fully Maintained Libraries

« OpenFHE (former PALISADE)
« Duality Technologies
« C++ and Python bindings (Linux)
« Threshold FHE for BGV, BFV, and CKKS schemes
« Strong community support

« Lattigo: lattice-based multiparty homomorphic encryption library
« The EPFL Laboratory for Data Security (2019-2022), Tune Insight SA (2022-)
+ Go
« Threshold FHE for BFV, BGV, and CKKS schemes

* TFHE-rs
* Rust
« Zama.ai, community support
- working on threshold FHE solutions, but not in the library



“Homomorphic encryption is already ripe for mainstream =NR
use, but the current lack of standardization is making it
difficult to start using it.” [HES]

ISO standardization

- Targeting BGV, BFV, CKKS, and CGGI

« Technical Committee : ISO/IEC JTC 1/SC 27 Information security, cybersecurity and
privacy protection

Homomorphic Encryption Standardization / HomomorphicEncryption.org

 open consortium of industry, government and academia to standardize homomorphic
encryption

- founded in 2017
« 6 meetings held since 2017, next meeting: Sunday October 13, 2024
- security recommendations are available since 2018

NIST Workshops on Multi-Party Threshold Schemes

21



Threshold FHE representative scenario in the =SNR
context of FL

« Each participant has some secret data

« Key generation routine is done for all participants

« participants generate their secret key shares and jointly generate
evaluation and public keys

« evaluation key is sent to the central server

« Aninitial FL model is trained and sent to all participants

« Each participant evaluates the function, computes and encrypts model
updates, sends the result to the central server

* The central server aggregates received updates
 Participants jointly decrypt the result

« A participant joins or leaves the group: new key generation routine



=NR
HE in Federated Learning

« supports only additions and multiplications
« polynomial functions can be implemented in a straightforward way

« averages, weighted-sum functions can be directly implemented, inverse
function / Taylor series

« some schemes do not support floating-point numbers: convert real numbers
to integers by proper scaling

« sigmoid and rectified linear activation (ReLU) functions are non-polynomial
functions: approximate these functions with low-degree polynomials or
replace them with polynomial activation functions (for models)

23



HE in Federated learning, contd

e communication overhead
 higher with HE, generation of keys, joint decryption

 gscalability is challenging for cross-device FL
 involve up to millions of devices
« more challenging using HE
« cross-silo vs cross-device — different requirements

« model quality
* non-iid issues
 biases

* Integration issues
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=NR
Conclusion

» Federated Learning presents a promising approach to machine learning and
data analysis

* reduces the amount of data that needs to be transmitted and
strengthens protection of sensitive data

 robust Al models without the necessity of transferring raw data across
the network

« Homomorphic encryption enhances data privacy and security in machine
learning and Al

 allows for private computation and protects data even if the computing
environment is compromised

 threshold HE: lattice-based schemes considered to be post-quantum

resistant
25



There are still challenges and future steps to =NR
consider

Efficiency and Performance: Federated Learning and Homomorphic
Encryption require significant computational resources and can be slower
than traditional methods. Future research should focus on improving
efficiency and performance, making these technologies more practical for
widespread use.

Scalability: As the number of devices and the amount of data grows, it will be
a challenge to scale these technologies. Research is needed to develop
methods for scalable, decentralized learning and efficient homomorphic
encryption.

26



There are still challenges and future steps to =NR
consider, cont.

Standards and Regulations: As new tec
for Federated Learning and Homomorp
developed. It will be important to estab
privacy and security.

hnologies, standards and regulations
hic Encryption are still being

ish guidelines for their use to ensure

Integration with Existing Systems: These technologies will need to be
integrated with existing systems. This will require new tools and
methodologies, as well as education and training for users.

27
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Thank you!
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