Enhanced Arbiter PUF Construction Model to Strengthening PUF-based Authentication

Rizka Reza Pahlevi¹, Hirokazu Hasegawa², Yukiko Yamaguchi³, Hajime Shimada³

¹Graduate School of Informatics, Nagoya University ²Center for Strategic Cyber Resilience Research and Development, National Institute of Informatics ³Information Technology Center, Nagoya University email : <u>pahlevirr@net.itc.nagoya-u.ac.jp</u>

Presenter Profile

Rizka Reza Pahlevi received the bachelor's and master's degree in Informatics from Telkom University, Indonesia in 2018 and 2019. He is currently a doctoral student majoring in Computer Security at the Graduate School of Informatics, Nagoya University, Japan.

His research interest lies in internet of things, hardware-based security, and embedded systems.

Introduction **Background and Motivation**

- **Evolving Security Challenges in Authentication**
 - methods.
 - Traditional authentication mechanisms are increasingly inadequate.

Physically Unclonable Functions (PUFs) as a Promising Solution

- Exploit inherent randomness from manufacturing processes.
- Ideal for generating secure authentication tokens.

Rapid technological advancements have led to more sophisticated malicious

Provide unique and unpredictable responses — difficult to replicate or predict.

Introduction **Our Enhanced Arbiter PUF Construction**

- **Limitations of Traditional Arbiter PUFs**
 - (CRP) correlations.
 - still faced security gaps.

Vulnerable to statistical model attacks due to Challenge-Response Pair

• Previous enhancements (e.g., XOR arbiter PUF) improved uniqueness but

Our Propose

Our Proposed Solution

- security attributes.
- security metrics.

Comprehensive Security Evaluation lacksquare

- across varied hardware environments.

Introduces a novel arbiter PUF design that enhances and maintains nearly ideal

Outperforms existing models like XOR, flip-flop, and traditional arbiter PUFs in

 Assessed using metrics: FAR, FRR, uniqueness, reliability, uniformity, and bit aliasing. Implemented on six different FPGA boards to validate effectiveness and reliability

Method Proposed PUF Construction

- Signature Generator:
 - Produces the signal for the PUF.
 - Comprises four lines, each containing a series of MUX gates.
 - Unique Design Features:
 - Four Sets of Lines: Unlike previous models (e.g., double arbiter PUF by Machida et al.), it uses four lines instead of two.
 - Cyclic Model with Crossing Patterns: Ensures fair and balanced circuit delays by evenly distributing signals across all paths.
 - Maintained Circuit Delay: Reduces bias from minimal delay paths, enhancing PUF quality.

Method Proposed PUF Construction

- Arbiter Component:
 - Utilizes elements from the conventional arbiter PUF.
 - Final MUX gates produce a spike signal.
 - Spike signal is distributed to multiple D Flip-Flops.

Method **Evaluation Metric - Classical Evaluation Metric**

- Uniqueness
 - Measures the average Hamming distant responses from different chips to the
- Uniformity
 - Assesses whether each bit in the PUF response has an equal probability of being '0' or '1'.
- Steadiness lacksquare
 - Measures the consistency of PUF responses to the same challenge.

ance between
same challenge.
$$Uniqueness = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{HD(R_i)}{m}$$

Uniformity
$$= \frac{1}{n} \sum_{l=1}^{n} R_{i,l}$$

$$HD_{intra} = \sum_{i=1}^{k} |x_i - x'_i| \quad \text{where} \quad D = \begin{cases} 0 & \text{if } \$x = \\ 1 & \text{if } \$x \text{ not} \end{cases}$$

Method **Evaluation Metric - PUF authentication-specific evaluations**

- Bit Aliasing
 - Measures the bias of each bit position across multiple responses.
- FAR and FRR
 - FAR : Probability of incorrectly ac unauthorized response.
 - FRR : Probability of incorrectly rej authorized response.

$$BA(n) = \frac{1}{N} \sum_{i=0}^{R-1} r_{i,n}$$

Example 2 cepting an
$$FAR = \frac{1}{\sigma_{\text{inter}}\sqrt{2\pi}} \int_{-\infty}^{HD} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_{\text{inter}}}{\sigma_{\text{inter}}}\right)^{2}\right) dx$$

jecting an $FRR = \frac{1}{\sigma_{\text{intra}}\sqrt{2\pi}} \int_{HD}^{\infty} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_{\text{intra}}}{\sigma_{\text{intra}}}\right)^{2}\right) dx$

Dataset

- Implementation on six different FPGA Boards
- Data Collection Process:
 - Challenges Sent per Board: **10,052** different challenges
 - Responses Collected per Challenge: **1,000** samples
 - Total Responses per Chip: 10,052,000 samples
 - Grand Total Dataset Entries: 60,312,000 responses across all six chips

Result Uniqueness

	CHIP 1	CHIP 2	CHIP 3	CHIP 4	CHIP 5	CHIP 6
CHIP 1		56.02%	54.19%	55.12%	53.64%	58.17%
CHIP 2	56.02%	_	51.05%	52.61%	50.01%	48.42%
CHIP 3	54.19%	51.05%		51.75%	53.78%	40.52%
CHIP 4	55.12%	52.61%	51.75%		52.99%	50.58%
CHIP 5	53.64%	50.01%	53.78%	52.99%		50.23%
CHIP 6	58.17%	48.42%	40.52%	50.58%	50.23%	

- The average Hamming distances between chips are mostly above 50%.

Indicates high uniqueness and distinctiveness in PUF responses across different chips.

Result **Bit-Aliasing**

	CHIP 1	CHIP 2	CHIP 3	CHIP 4	CHIP 5	CHIP 6
CHIP 1		50.56%	53.74%	52.39%	48.57%	49.89%
CHIP 2	49.73%	_	54.53%	53.81%	51.41%	55.85%
CHIP 3	53.14%	56.08%		57.02%	49.28%	60.03%
CHIP 4	51.91%	54.09%	56.85%		49.98%	56.82%
CHIP 5	48.52%	53.60%	51.38%	51.47%		54.57%
CHIP 6	49.38%	57.79%	65.61%	57.33%	52.31%	

- Bit aliasing values are generally close to the ideal 50%.

• Values range from 48.52% to 65.61%, with most clustering around 50%.

Result Uniformity

- Uniformity values are generally close to the ideal 50%.
- CHIP 2 has the closest average to the ideal at 47.95%.
- still acceptable.

Uniformity	Steadiness(HD _{intra})
(average)	(average)
61.16%	88.63%
47.95%	80.98%
61.40%	96.49%
53.04%	87.18%
43.29%	86.88%
51.94%	93.60%

CHIP 3 has the highest average at 61.40%, slightly further from the ideal but

Result Chip **Steadiness** CHIP 1 CHIP 2 CHIP 3 CHIP 4 CHIP 5 CHIP 6

- Steadiness values range from 80.98% to 96.49%.
- CHIP 3 shows the highest steadiness at 96.49%.
- CHIP 2 shows the lowest steadiness at 80.98%.

Uniformity	Steadiness(HD _{intra})
(average)	(average)
61.16%	88.63%
47.95%	80.98%
61.40%	96.49%
53.04%	87.18%
43.29%	86.88%
51.94%	93.60%

Result FAR and FRR

	FAR						EDD
	CHIP 1	CHIP 2	CHIP 3	CHIP 4	CHIP 5	CHIP 6	FRR
CHIP 1	_	2.1825%	1.8879%	2.0153%	2.4738%	1.8380%	1.7899%
CHIP 2	2.1825%	_	2.2582%	2.3246%	2.4935%	2.4553%	2.3465%
CHIP 3	1.8879%	2.2582%	_	1.8419%	2.4910%	1.5940%	1.1281%
CHIP 4	2.0153%	2.3246%	1.8419%	_	2.4940%	1.8631%	2.2095%
CHIP 5	2.4738%	2.4935%	2.4910%	2.4940%	_	2.5077%	1.9949%
CHIP 6	1.8380%	2.4553%	1.5940%	1.8631%	2.5077%	—	1.4496%

- Values range from 1.5940% to 2.5077%.

• FAR values are mostly under 2.5%, indicating a low rate of false acceptances.

Result FAR and FRR

	FAR						EDD
	CHIP 1	CHIP 2	CHIP 3	CHIP 4	CHIP 5	CHIP 6	FRR
CHIP 1	—	2.1825%	1.8879%	2.0153%	2.4738%	1.8380%	1.7899%
CHIP 2	2.1825%	_	2.2582%	2.3246%	2.4935%	2.4553%	2.3465%
CHIP 3	1.8879%	2.2582%	_	1.8419%	2.4910%	1.5940%	1.1281%
CHIP 4	2.0153%	2.3246%	1.8419%	_	2.4940%	1.8631%	2.2095%
CHIP 5	2.4738%	2.4935%	2.4910%	2.4940%	_	2.5077%	1.9949%
CHIP 6	1.8380%	2.4553%	1.5940%	1.8631%	2.5077%	—	1.4496%

- FRR values are under 2.5%, indicating a low rate of false rejections.
- Values range from 1.1281% to 2.3465%.

ting a low rate of false rejections.

Result Comparison

Arbiter PUF	PUF Security Evaluation							
Research	FAR	FRR	Uniqueness	Steadiness(HD _{intra})	Uniformity	Bit Aliasing		
Ideal	0%	0%	50%	100%	50%	50%		
Conventional APUF	_	_	4.72% / 4.96%	99.24% / 99.17%	53.81% /	_		
[20]			/ 4.44%	/ 99.55%	56.53% / 54%			
2-1 Double APUF	_	_	41.36% /	92.21% / 88.8% /	55.19% /	_		
[20]			49.70% /	89.95%	31.4% /			
			48.06%		50.63%			
4-1 Double APUF	_	_	50.46% /	65.04% / 81.01%	55.67% /	_		
[20]			51.34% /	/ 74.15%	54.76% /			
			48.78%		54.59%			
Path Changing Switch	_	_	49.81% /	Avg 0.35% / Avg	Avg 49.77% /	_		
(PCS) [21]			51.34%	1.49%	Avg 57.64%			
APUF [23]	_	_	42.7%	96%	—	_		
APUF [24]	_	_	15.15%	0.45% - 0.5%	98%	_		
APUF [22]	_	_	45.2%	_	_	_		
FOXFFAPUF [25]	_	_	42% / 44%	_	_	_		
Efficient XOR APUF	_	_	48.69%	99.41%	50.73%	_		
[3]								
Our Proposed PUF	1.5940% -	1.1281% -	40.52% -	96.49% to	47.95% -	48.52% -		
_	2.4940%	2.3465%	58.17%	80.98%	61.40%	60.03%		

Conclusion and Future Work

- Significant Advancements in PUF-Based Authentication
- Validated Effectiveness Through Comprehensive Testing
- Robustness Confirmed by FAR and FRR Measurements
- Contributions to Digital Security
 - Offers a promising solution for enhancing authentication mechanisms.
 - Paves the way for widespread adoption in security-critical applications.

Conclusion and Future Work

- Optimization for Lower FAR and FRR
- Enhancing Reliability
- Broader Hardware Implementation
- Exploration of Practical Applications

Thank You