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Introduction
Background and Motivation

• Evolving Security Challenges in Authentication 

• Rapid technological advancements have led to more sophisticated malicious 
methods.


• Traditional authentication mechanisms are increasingly inadequate.


• Physically Unclonable Functions (PUFs) as a Promising Solution 

• Exploit inherent randomness from manufacturing processes.


• Provide unique and unpredictable responses—difficult to replicate or predict.


• Ideal for generating secure authentication tokens.
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Introduction
Our Enhanced Arbiter PUF Construction

• Limitations of Traditional Arbiter PUFs 

• Vulnerable to statistical model attacks due to Challenge-Response Pair 
(CRP) correlations.


• Previous enhancements (e.g., XOR arbiter PUF) improved uniqueness but 
still faced security gaps.
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Our Propose

• Our Proposed Solution 

• Introduces a novel arbiter PUF design that enhances and maintains nearly ideal 
security attributes.


• Outperforms existing models like XOR, flip-flop, and traditional arbiter PUFs in 
security metrics.


• Comprehensive Security Evaluation 

• Assessed using metrics: FAR, FRR, uniqueness, reliability, uniformity, and bit aliasing.


• Implemented on six different FPGA boards to validate effectiveness and reliability 
across varied hardware environments.
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Method

• Signature Generator:


• Produces the signal for the PUF.


• Comprises four lines, each containing a series of MUX gates.


• Unique Design Features:


• Four Sets of Lines: Unlike previous models (e.g., double arbiter 
PUF by Machida et al.), it uses four lines instead of two.


• Cyclic Model with Crossing Patterns: Ensures fair and balanced 
circuit delays by evenly distributing signals across all paths.


• Maintained Circuit Delay: Reduces bias from minimal delay 
paths, enhancing PUF quality.

Proposed PUF Construction
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Method
Proposed PUF Construction

• Arbiter Component:


• Utilizes elements from the conventional arbiter PUF.


• Final MUX gates produce a spike signal.


• Spike signal is distributed to multiple D Flip-Flops.
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Method
Evaluation Metric - Classical Evaluation Metric

• Uniqueness


• Measures the average Hamming distance between 
responses from different chips to the same challenge.


• Uniformity


• Assesses whether each bit in the PUF response has 
an equal probability of being ‘0’ or ‘1’.


• Steadiness


• Measures the consistency of PUF responses to the 
same challenge.
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Method
Evaluation Metric - PUF authentication-specific evaluations

• Bit Aliasing


• Measures the bias of each bit position across 
multiple responses.


• FAR and FRR


• FAR : Probability of incorrectly accepting an 
unauthorized response.


• FRR : Probability of incorrectly rejecting an 
authorized response.

9

BA(n) =
1
N

R−1

∑
i=0

ri,n

FRR =
1

σintra 2π ∫
∞

HDmax
exp −

1
2 (

x − μintra
σintra )

2

dx

FAR =
1

σinter 2π ∫
HDmax

−∞
exp −

1
2 (

x − μinter
σinter )

2

dx



Dataset

• Implementation on six different FPGA Boards


• Data Collection Process:


• Challenges Sent per Board: 10,052 different challenges


• Responses Collected per Challenge: 1,000 samples


• Total Responses per Chip: 10,052,000 samples


• Grand Total Dataset Entries: 60,312,000 responses across all six chips
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Result
Uniqueness

• The average Hamming distances between chips are mostly above 50%.


• Indicates high uniqueness and distinctiveness in PUF responses across different chips.
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Result
Bit-Aliasing

• Bit aliasing values are generally close to the ideal 50%.


• Values range from 48.52% to 65.61%, with most clustering around 50%.
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Result
Uniformity

• Uniformity values are generally close to the ideal 50%.


• CHIP 2 has the closest average to the ideal at 47.95%.


• CHIP 3 has the highest average at 61.40%, slightly further from the ideal but 
still acceptable.
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Result
Steadiness

• Steadiness values range from 80.98% to 96.49%.


• CHIP 3 shows the highest steadiness at 96.49%.


• CHIP 2 shows the lowest steadiness at 80.98%.
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Result
FAR and FRR

• FAR values are mostly under 2.5%, indicating a low rate of false acceptances.


• Values range from 1.5940% to 2.5077%.
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Result
FAR and FRR

• FRR values are under 2.5%, indicating a low rate of false rejections.


• Values range from 1.1281% to 2.3465%.
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Result
Comparison
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Conclusion and Future Work

• Significant Advancements in PUF-Based Authentication


• Validated Effectiveness Through Comprehensive Testing


• Robustness Confirmed by FAR and FRR Measurements


• Contributions to Digital Security


• Offers a promising solution for enhancing authentication mechanisms.


• Paves the way for widespread adoption in security-critical applications.
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Conclusion and Future Work

• Optimization for Lower FAR and FRR


• Enhancing Reliability


• Broader Hardware Implementation


• Exploration of Practical Applications
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Thank You
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