COMPUTATIONWORLD 2023

HERWIG MANNAERT,

APRIL 16, 2024

Universiteit Antwerpen

Intro on myself & my work

* Electronics engineer, PhD in computer vision

* Co-created Normalized Systems Theory on engineering and architecture of
evolvable software systems, i.e., enabling systems to cope with change

* Books and papers (140 publications), and YouTube channel

* Human adoption

e Spin off company with 55 software engineers

* > 65 software engineers at customers / partners
e Software production

* Suite of code generators and tools

* Many software projects and products, e.g.,

* Energy monitoring and management suite
* Command & Control Centre for medical drone transport

* Full professor on University of Antwerp, not an esteemed researcher

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction

The Need for Software Evolution
The Premise of Normalized Systems
On Software Factories and DevOps

Overview /
Toward Rejuvenation Factories N

-y

On the State of our Factory

Conclusion

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory VA

Conclusion

Introduction

* For decades, strong indications exist for systemic issues in software
evolution and maintenance

* For decades, engineers have been striving to produce software in a more
controlled and industrial way

* We have pursued the creation of more evolvable software systems
through Normalized Systems Theory

* The current mainstream approach to organize the operations of so-
called software factories is a methodology called DevOps

* We describe our approach to combine NST and DevOps to create
evolvable systems at scale in so-called rejuvenation factories

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory D =VA

Conclusion

99

The Law of Increasing
Complexity.

Manny Lehman

An Inconvenient Truth

The Law of Increasing Complexity
Manny Lehman

“As an evolving program is continually changed, its complexity, reflecting
deteriorating structure, increases unless work is done to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

o

99 &

You can see the computer
age everywhere but in the
productivity statistics.

Robert Solow

Clean Architecture — Robert C. Martin

1400

1200

1000 -

800

600 -

400

200 -

Market-Leading Software Product Life Cycle

1

=
2

=
3

4

I | ® Engineering Staff
5 6 7 8

Product
Size
(KLOC)

8000
7000
600

o

5000
400

o

300

o

2000
100

o

0

Market-Leading Software Product Life Cycle

1 2 3 4 5 6 7 8

Clean Architecture — Robert C. Martin

Market-Leading Software Product Life Cycle
400

350 -

300 =
250 =
200 T | % Cost/LOC
150 =
100 | I = = =

50 I

0 __-..._-,__-.47__I 7 : .

4 2 3 4 5 6 7 8

Major release

Clean Architecture — Robert C. Martin

Productivity/Release
100%
$20,000,000
75%
> S $15,000,000
2 g
é 50% <. $10,000,000
-
: :
S S $5,000,000
$0
0% 1 2

3

4 5
Release

6

7

8

The Need for Software Evolution

* Laws of Manny Lehman
* Increasing Complexity
* Declining Quality

* Solow’s Productivity Paradox (2.0)
* Consequences of bad architecture by Robert C. Martin

* Dutch government Elias Committee
* huge cost overruns, depreciation of IT systems after 7 years

e Concepts have been introduced like technical debt

But: Do not be ashamed !/

VEWCLE STATION th: incEs mevERs

SPACECRAFT (NoRTH AMERICAN AVIATION.

LES JETTISON MOTOR & LAUNGH ESCAPE SYSTEM

SPRCECRAR

youcLe sTATIONS in:

incugs weTens

VEMCLE STATION
BASE OF CoNARD NOSE CONE

CENTERLINE LAUNGH ESCAPE MOTOR

SoTTOM OF LES SKiAT

Tor o soosT coven

a0
ann e

s s

160,03 100,585

oy wnw

Change Ripples: The Saturn V-

yemcLe sepanaT: wo e
senvice mosuLE — AFT wEAT swies v 9w
CABKY O/ LBMLIEAL .0 w.m AEACTION CONTROL SYSTEM MOOULE e sas
FLY AWAY UMBILICAL yeoss w1

FUEL SUMP TANK VENICLE SFATION FLIGHT SEPARATION s e

s Chvosemc sronAsk TANK
LUNAR MODULE GRUMMAN AIRGRAFT ENGINEERING)
RCS THAUSTER ASSEMBLY 4 PLACES
L/M UPPER DOCKING TUNNEL
L/ ASCENT sTAGE
L/M DEscENT aTAGE

L/M LANDING GEAR 4 PLACES

YECLE SEPARATION
PROPULSION MaTOR
RENOEZVOUS RADAR ANTEMA
Luman moouLE

L/M FORWARD DOCKING TUNNEL

VemeLe sTATION

e aans

30,08 sem
asse wan

INSTRUMENT UNIT_cane INSTRUMENT UNIT s rmCuuenr v sorvow sazsse susss

* Increase thrust power g ()| L

ACCESS PLATFORM SURRORT FITTING FETE
ANTENNAS CENTERLINE s we FUBL MASS sENSOR PROSE

COLD WELIUM SAMERES (1 INSTRUMENTATION PROBE

 Add additional F1 E

o or AFT sKAT mrse wem e v

AUKILIARY PROPULSION SYSTEM (APS) &)
Eueq seanarion
Lox vENT (AR si08 .0 00m ms sau

MELIUM SPHERES (& PLACES)
LoX Ly FILL AND BRAI

meoos Mes nam s
RETRO ROCKET (4 PLACES) P/
e

Additional fuel line S =

SYSTEMS TuNNEL

Tor 52 ENaINE ass G000 100.00 130

BOTTOM OF FORWARD SKINT

g vewr
. LM, PROPELLANT MANAGEMENT PROSE
- Tor roRwARD suiRT I ——

RADIO COMMAND ANTENNA 4 PLACES

More pOwerful fuel pump

Lox TANK

PRESSURIZATION MAST

Lox venT Line

RN X

R W A ok TOR OF Li, FEED FAIRING 3 PLACES o
niNG sLoSKH BAFFLE Lox TANK EQUATOR s wom
Lk, REGIRCULATION SYSTEM 3 mLACES
. LOX FILL & DRAIN (FAR 500 w00 sas
y cruciwonm BarrLE Mmoo A
L PiL & A .00
1
EgPl sorrom L, Feeo ramine weoo 4o
DIvision oF AFT Sk .00 y
ToR 0F AFY SKINT wo.co 4008 326.00 - Fiigur serAmATION o000 4e704 we0 asme
BOTTOM OF SLOSH BAFFLE 0
GBAL mLANE w00 2340

BOTTOM ULLAGE R M FAIRING e -.om
BoTTOM oF THRUST cone

* Stronger fuel tank stage 1 e E

3 Encines (s pLacES)

&

$IC worwa

* Adapt shape fuel tank stage 1 I F- zEt T

RING SLOSH BAFFLES

PRESSUNIZATION TUNNEL @ MACES)

Enlarge interstage & second stage
Adapt interstage & second stage SEmL mn

LOX FEED LINE TUNNEL (5 PLACES)

o -
e -

R o e o I -

e Arats e

Besra e r

® - s
s ik 550

[N]

7

SLoSH BAFFLES TOP OF ENGINE FAIRING 2,00

rus FiL 8 omA o 2
° \ Tor oF THRusT sTRUCTURE 5.7
RETRO ROCKETS 3 EACH 4 PLACED)
* > Design new rocket == =
sorrow or FueL TANK R ﬂ J, od
sy s e A =
vt aavcrine .00 100
s0TTOM O -1 Enine @ PLAGES) i -2 we 1se
NOTE: 5-1C STAGE ROTATED & ‘
COUNTER CLOCKWISE

FOR CLARITY
Tve BUPEINE coreany
s BRANCH.
Jros— SPACE DNISION, LA SYSTE

SATURN v APOLLO

Change Ripples: A Racing Bike

* Gear handle worn out

* Replace gear handle
Handle for 8 gears retired
New handles only 7 or 9 gears
Replace gear block in the rear
Replace gear cabling
Replace gear block in front

- Replace racing bike

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory R =vA

Conclusion

Design Theorems for Stable Software

* In order to avoid dynamic instabilities in the software design cycle, the
rippling of changes needs to be depleted or damped: a =0

* As these ripples create combinations of multiple changes for every
functional change, we call these instabilities combinatorial effects

 Demanding systems theoretic stability for the software transformation,
leads to the derivation of principles in line with existing heuristics

* Adhering to these principles avoids dynamic instabilities, meaning that
these principles are necessary, not sufficient for systems stability

N
Software Elements for Stable Skeleton Structures ::;§~

 Element structures are needed to interconnect with CCC solutions

* NS defines 5 types of elements, aligned with basic software concepts:
* Data elements, to represent data variables and structures
» Task elements, to represent instructions and/or functions
* Flow elements, to handle control flow and orchestrations
* Connector elements, to allow for input/output commands
* Trigger elements, to offer periodic clock-like control

* It seems obvious to use code generation techniques to create instances
of these recurrent element structures

* Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Separating the Dimensions of Variability o

-5 Skeletons Utilities N\ Transaction

Mirrors \Access Control
Invoice ||
-Number \ Persistenc
Order -Order — ! -
-Ref
-Product

Createlnvoice

(ProcessOrder)
(Sendinvoice)

Craftings

OOOO
_ e @O 0

O D
. -)
- D O 4

Codebase

The Essence of Variability Dimensions

* We identify four dimensions of variability:
 Models or mirrors, new data attributes/relations, new elements
e Expanders or skeletons, new or improved implementations of concerns
* Infrastructure or utilities, new frameworks to implement various concerns
e Custom code or craftings, new or improved implementations of tasks, screens

e |[f separated and well encapsulated
 Number of versions to maintain is additive: #V = #M + #E + #I + #C
 Number of versions available is multiplicative: #V = #M X #E x #1 x #C
* Where the same holds within any individual dimensions,
e.g., infrastructure dimension: #1 = #G X #P x #B x #T

But what about the generator code ?

* You also have to maintain the meta-code
e Consists of several modules
* |sin general not trivial to write / S]\

[Reader classes

* Will face growing number of implementations: [Model dlasses
* Different versions @
* Multiple variants '
 Various technology stacks

& Generator classes j
* Will have to adapt itself to: 52
* Evolutions of its underlying technology /

Control classes

Code Templates

* Which even may become obsolete S)

C
* Meta-Circularity: meta-code that (re)generates itself N

L

o

Creating Meta-Circular and Runtime Generation D<o

(" ™
Generator
Code Generator code
S o generates itself
4)
Generated
Generator code Code
J
generates code
(" ™
Generated
Generated code g Artifacts)

itself generates

The Power of Circularity

A transistor is switched by a transistor
* A cell is produced by a cell

* Enables rapid evolution 4{
 Single point of progress
* Better transistor = better circuits
* Improved cell 2 improved life forms

* Collapses/shortcuts the design cycle
* Even positive feedback or resonance

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory R =vA

Conclusion

99

Mass Produced
Software Components.

%

-

%

'l
'
‘~“
5 e
, A
«

A
)
A

Doug Mcllroy

-

.

;
- A

” ol
oy -
L
-
-

On Software Factories and Reusability

* Produce and assemble software in more industrial way

e Mass produced software components (Mcllroy)

e Software Product Lines (SEl)
* Predicted versus opportunistic reuse

» Software Factory (Greenfield et al.)
* Techniques of traditional manufacturing

e Systematic reuse of software is not trivial

* Methodological issues (Saeed)

* |ssues related to evolvability (NST)
* Rippling of impacts due to new versions and variants

99

= = ; |
.:A'MI'
| cHoo-L
>

Building a factory is
‘100 times’ as hard as
building a car.

- = Vr‘Jlgr’

Elon Musk

28

Software Factories and DevOps

* The current mainstream approach to organize and control the
operations of so-called software factories is a methodology called
DevOps to integrate and automate the work of software development
(Dev) and IT operations (Ops).

* DevOps integrates and automates the work of software development
(Dev) and IT operations (Ops) as a means for improving and shortening
the systems development life cycle

* an assumption that all functions can be carried out, controlled, and managed in a
central place using a simple code

* tools in Continuous Integration Continuous Deployment (CICD) infrastructure are
in general numerous and versatile

Today : a Typical DevOps Environment

Jenkins

sonar \
Qube

OPERATE

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory D =VA

Conclusion

From DevOps to Evolvable Pipelines

* A clear need exists for the structured separation and encapsulation of
the various functional tasks performed by numerous versatile tools

- similar to encapsulation of cross-cutting concerns in NS elements

e Various tasks should be model-driven with tool implementation(s)
* Automation server, e.g., Jenkins, Tekton
* Build engine, e.g., Maven, Bamboo
 Automated testing, e.g., Junit, Cucumber
 Automated deployment, e.g., Docker, Ansible
* Quality Control, e.g., SonarQube

From DevOps to Evolvable Pipelines

Cloud Platform

\ Quality Control

Automation Server

o

From DevOps to Integrated Control Systems < o

* A clear need exists for integrated control systems, to manage and
control end-to-end the building and assembly of software systems

e Such a system needs to encompass the various processes and tools, and

therefore allow
* to breakdown DevOps to increase security and reduce technical debt

 to offer a SBOM (Software Bill Of Materials) for quality assurance

* This is similar to
 MES (Manufacturing Execution Systems) systems, that track and document the
transformation of raw materials to finished goods

* SCADA (Supervisory Control and Data Acquisition) systems that control
production processes in real-time, in manufacturing

From DevOps CI/CD toward CI/CD/CR

* An NST software factory needs to encompass assembly lines for

* NST code generators, e.g., expansion resources, runtime libraries
* Runtime libraries and expansion resources
* NS software applications, e.g., web information systems, tools and plugins

* An NST software factory needs to integrate build processing steps
* Expanding and building
e Unit testing and reporting
* Deploying and integration testing

* An NST software factory needs to support
* Harvesting and Re-injection of custom code
- Systematic rejuvenation

From DevOps to Software Assembly Units < o

4 Registry N\ [Documents)

Code Quality
Base Test Coverage |

Dependencies
Executables [€—1 | Images pendenc
Vulnerabilities

AN Z

Expansion
Resources

Runtime
Libraries

k Nexus

/Re ositor \ /ﬁv /_Y_\
> i Expand 4 Codebase) Build 4 Artifacts)

~N

Model >
[J Expansion Source Runtime Expanders ‘L Servers h
3 Resources Scripts ?| | Libraries Runtime Libs g Deploy ADD S
Markup Executables ——> [PP ervers]
J

Custom code > -
[R J \. J _ ") \ J _ Y, \ uServices
Y Y

(Ronmre)
Bitbucket @ @ >(Reports

Analyze .
:] Test > Cod|ng
A 4 w — — Testing
i i Libraries
K[C onfig settmgsb)E l\/lave)nE Docke)rE
YE Dependency-Track| SonarQube Renovate| Sourcegraph Cucumber

[Jenkins Automation server]

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory D =vA

Conclusion

The State of our Rejuvenation Factory

e Structural rejuvenation

* According to different modes
* For single, significant observation
* Under normal market conditions

Application Domain Age Data Model | Custom Code
(vrs) (Nr. elem.) (Size kBytes)
Energy Monitoring > 10 116 6,352
3—5 38 1,010
Power Grid Management 1—3 106 10,642
Human Resource Services 3—5 040 12,103
3—5 59 1,433
Real Estate Services > 10 491 70,449
1—-3 331 1,412
Unmanned Aviation 5—10 30 4.230
Traffic Management 1—3 134 2,896
Learning Management 1—3 133 1,794

TABLE I. Domain, lifespan, model and custom size of various applications.

The State of our Rejuvenation Factory

* Continuous development

* Applications in full or extended development
* Several applications have dedicated expanders
* Daily build and test, bi-weekly deployments

* Updating dependencies
e Similar to traditional CI/CD, cadence as above

* Rejuvenating skeletons
* Expanders follows same cadence
e Rejuvenated skeletons in production (bi-)monthly

* Structural rejuvenation of skeletons across application landscape, the CI/CD/CR
has only been realized the last 4 to 5 years

The State of our Rejuvenation Factory

* Replacing technologies

* Throughout the years, support has been introduced in logic/data layer for
* Additional databases
* Additional providers for transactions, persistency, access control
* In the early years, systematic migrations have been done in view/control layer
 MVC - MVC: Cocoon to Struts2
s MVC =2 MVC-MVVM: Struts2 to Struts2/Knockout
* In recent years, technologies were introduced without systematic migration
e JAX-RS in control layer
* Angular in view layer

e Systematic migration seems to be hampered by discipline creep

The State of our Rejuvenation Factory

* A Software Manufacturing Control System is being developed

* Aggregated views are provided across
* Time
* Assembly unit hierarchy
e components, libraries
* Expander bundles
* Aspect views are provided based on
e Custom code
Quality metrics
Test coverage
Model size
Dependencies

The State of our Rejuvenation Factory

* Aggregated views

400 A
350 1
300 1
250 1
200 1
150 1
100 1

50 1

0 le= e =

4.5 -

3.5

2.5

1.51

0.5 -

Insertion Count

Jan-2018 Mar-2018 May-2018 Jul-2018 Sep-2018

-l CLIENT -@- CONTROL DATA LOGIC -=— PROXY SHARED VIEW|

Normalized insertion Size

(JIEEEESSEEEE————— s s = .

Jan-2018 May-2018
|-I- CLIENT - CONTROL DATA

Mar-2018 Jul-2018 Sep-2018

SHARED - VIEW|

LOGIC -=- PROXY

The State of our Rejuvenation Factory

* Aggregated views

Distribution data elements

I \umber of data elements from application
1,000

200
600

400
-

Distribution task/flow elements

B Number of task elements [l Number of flow elements
120
80

4

=

The State of our Rejuvenation Factory

* Aggregated views

Distribution custom numbers

B otal number extensions [Total number insertions
5,000

4,000
3,000
2,000

1 II II i
0 - - = ol — O — . [™

Distribution custom code sizes

Il Toial size extensions [Total size insertions
60,000,000
40,000,000

20,000,000

On the State of our Rejuvenation Factory

B 1otal number expanders [l Total number features
160

140
120
100
30
60

40

Bl Total size templates
700,000

600,000
500,000
400,000
300,000

200,000
100,000 I I
0 (| . — — _ — — L — eem L [| o

The State of our Rejuvenation Factory

* A control layer should allow to optimize conditions and improve output
in the software factory, ideally on a continuous basis
 Surfacing the various views on a continuous basis could facilitate
* Instantaneous assessment of exposure to vulnerabilities

e Continuous assessment of impact when retiring technologies
e Continuous assessment of importance of in-house libraries

and guide the allocation of development resources

* Including the expanders in the factory control system could be pivotal for

* Trustin the use of (additional) expander bundles
* Adoption of expander bundles from partners into the factories

On the State of our Rejuvenation Factory

Expander Bundles Ownership

B net.democritus I org.normalizedsystems M com.cast4all
B ni.rws I com.connectingexpertise [l be.stadim
B com.helicus I be.fidimcore I be.fluvius
Il be.randstadaroup

S

Vi

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Introduction
The Need for Software Evolution
The Premise of Normalized Systems

On Software Factories and DevOps Overview

Toward Rejuvenation Factories

-y

On the State of our Factory VA

Conclusion

Conclusion

* We have argued that strong indications exist for systemic issues in
software evolution and maintenance

* Our work on NST aims to create more evolvable software systems

* Engineers have been striving to produce software in a more controlled
and industrial way, currently using a methodology called DevOps

* We have described our approach to combine NST and DevOps to create
evolvable software systems at scale in so-called rejuvenation factories

* An overview was given of the current state of our rejuvenation factory,
including some key figures, control mechanisms, and potential issues

Some References

* Mannaert Herwig, McGroarty Chris, Gallant Scott, De Cock Koen, Integrating Two Metaprogramming Environments :
An Explorative Case Study : ICSEA 2020 - ISSN 2308-4235 - IARIA, 2020, p. 166-172

* Mannaert Herwig, De Cock Koen, Uhnak Peter, On the realization of meta-circular code generation : the case of the
normalized systems expanders, ICSEA 2019 - ISSN 2308-4235 - IARIA, 2019, p. 171-176

* De Bruyn Peter, Mannaert Herwig, Verelst Jan, Huysmans Philip, Enabling normalized systems in practice : exploring a
modeling approach, Business & information systems engineering - ISSN 1867-0202 - 60:1(2018), p. 55-67.

* Mannaert Herwig, Verelst Jan, De Bruyn Peter, Normalized systems theory : from foundations for evolvable software
toward a general theory for evolvable design, ISBN 978-90-77160-09-1 - Koppa, 2016, 507 p.

* Mannaert Herwig, Verelst Jan, Ven Kris, Towards evolvable software architectures based on systems theoretic stability,
Software practice and experience - ISSN 0038-0644 - 42:1(2012), p. 89-116

* Mannaert Herwig, Verelst Jan, Ven Kris, The transformation of requirements into software primitives : studying
evolvability based on systems theoretic stability, Science of computer programming - ISSN 0167-6423 - 76:12(2011), p.
1210-1222

* Mannaert Herwig , De Bruyn Peter, Verelst Jan, On the Interconnection of Cross-Cutting Concerns within Hierarchical
Architectures, IEEE Transactions on Engineering Management - ISSN 1558-0040 - 69:6(2022), p. 3276-3291.

* Normalized Systems Foundation Lectures : https://www.youtube.com/c/normalizedsystems

* Normalized Systems Documentation and Tooling : https://foundation.stars-end.net

https://repository.uantwerpen.be/link/irua/164962
https://repository.uantwerpen.be/link/irua/164962
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.124661%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.100309%7Eirua
https://repository.uantwerpen.be/link/irua/149301
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.124661%7Eirua
https://repository.uantwerpen.be/link/irua/136759
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.97407%7Eirua
https://repository.uantwerpen.be/link/irua/93405
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.97407%7Eirua
https://repository.uantwerpen.be/link/irua/91112
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/link/irua/91112
https://www.youtube.com/c/normalizedsystems
https://foundation.stars-end.net/

