
C O M P U T A T I O N W O R L D 2 0 2 3

Combining DevOps and

Normalized Systems Toward

Software Rejuvenation Factories

A P R I L 1 6 , 2 0 2 4

H E R W I G M A N N A E R T ,

• Electronics engineer, PhD in computer vision

• Co-created Normalized Systems Theory on engineering and architecture of
evolvable software systems, i.e., enabling systems to cope with change
• Books and papers (140 publications), and YouTube channel
• Human adoption

• Spin off company with 55 software engineers
• > 65 software engineers at customers / partners

• Software production
• Suite of code generators and tools
• Many software projects and products, e.g.,

• Energy monitoring and management suite
• Command & Control Centre for medical drone transport

• Full professor on University of Antwerp, not an esteemed researcher

Intro on myself & my work

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

• For decades, strong indications exist for systemic issues in software
evolution and maintenance

• For decades, engineers have been striving to produce software in a more
controlled and industrial way

• We have pursued the creation of more evolvable software systems
through Normalized Systems Theory

• The current mainstream approach to organize the operations of so-
called software factories is a methodology called DevOps

• We describe our approach to combine NST and DevOps to create
evolvable systems at scale in so-called rejuvenation factories

Introduction

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

Manny Lehman

The Law of Increasing
Complexity.

7

An Inconvenient Truth

The Law of Increasing Complexity

Manny Lehman

“As an evolving program is continually changed, its complexity, reflecting
deteriorating structure, increases unless work is done to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

Robert Solow

You can see the computer
age everywhere but in the
productivity statistics.

9

Clean Architecture – Robert C. Martin

Clean Architecture – Robert C. Martin

Clean Architecture – Robert C. Martin

• Laws of Manny Lehman
• Increasing Complexity

• Declining Quality

• ….

• Solow’s Productivity Paradox (2.0)

• Consequences of bad architecture by Robert C. Martin

• Dutch government Elias Committee
• huge cost overruns, depreciation of IT systems after 7 years

• Concepts have been introduced like technical debt

The Need for Software Evolution

But: Do not be ashamed !!

Change Ripples: The Saturn V

• Increase thrust power
• Add additional F1

• Additional fuel line

• More powerful fuel pump

• Larger fuel tank stage 1

• Stronger fuel tank stage 1

• Adapt shape fuel tank stage 1

• Enlarge interstage & second stage

• Adapt interstage & second stage

• …

•  Design new rocket

Change Ripples: A Racing Bike

• Gear handle worn out
• Replace gear handle

• Handle for 8 gears retired

• New handles only 7 or 9 gears

• Replace gear block in the rear

• Replace gear cabling

• Replace gear block in front

• …

•  Replace racing bike

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

Design Theorems for Stable Software

• In order to avoid dynamic instabilities in the software design cycle, the
rippling of changes needs to be depleted or damped: a = 0

• As these ripples create combinations of multiple changes for every
functional change, we call these instabilities combinatorial effects

• Demanding systems theoretic stability for the software transformation,
leads to the derivation of principles in line with existing heuristics

• Adhering to these principles avoids dynamic instabilities, meaning that
these principles are necessary, not sufficient for systems stability

• Element structures are needed to interconnect with CCC solutions

• NS defines 5 types of elements, aligned with basic software concepts:
• Data elements, to represent data variables and structures

• Task elements, to represent instructions and/or functions

• Flow elements, to handle control flow and orchestrations

• Connector elements, to allow for input/output commands

• Trigger elements, to offer periodic clock-like control

• It seems obvious to use code generation techniques to create instances
of these recurrent element structures

• Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Software Elements for Stable Skeleton Structures

Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Separating the Dimensions of Variability
Skeletons

Mirrors

Utilities

Persistency

Codebase

Craftings

• We identify four dimensions of variability:
• Models or mirrors, new data attributes/relations, new elements

• Expanders or skeletons, new or improved implementations of concerns

• Infrastructure or utilities, new frameworks to implement various concerns

• Custom code or craftings, new or improved implementations of tasks, screens

• If separated and well encapsulated
• Number of versions to maintain is additive: #V = #M + #E + #I + #C

• Number of versions available is multiplicative: #V = #M x #E x #I x #C

• Where the same holds within any individual dimensions,

e.g., infrastructure dimension: #I = #G x #P x #B x #T

The Essence of Variability Dimensions

• You also have to maintain the meta-code
• Consists of several modules

• Is in general not trivial to write

• Will face growing number of implementations:
• Different versions

• Multiple variants

• Various technology stacks

• Will have to adapt itself to:
• Evolutions of its underlying technology

• Which even may become obsolete

• Meta-Circularity: meta-code that (re)generates itself

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Model

But what about the generator code ?

Creating Meta-Circular and Runtime Generation

Generator
Code

Generated
Code

Generated
Artifacts

Generator code
generates code

Generated code
itself generates

Generator code
generates itself

• A transistor is switched by a transistor

• A cell is produced by a cell

• Enables rapid evolution
• Single point of progress

• Better transistor  better circuits

• Improved cell  improved life forms

• Collapses/shortcuts the design cycle
• Even positive feedback or resonance

The Power of Circularity

trans cell

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

Doug McIlroy

Mass Produced
Software Components.

26

• Produce and assemble software in more industrial way
• Mass produced software components (McIlroy)

• Software Product Lines (SEI)
• Predicted versus opportunistic reuse

• Software Factory (Greenfield et al.)
• Techniques of traditional manufacturing

• Systematic reuse of software is not trivial
• Methodological issues (Saeed)

• Issues related to evolvability (NST)
• Rippling of impacts due to new versions and variants

On Software Factories and Reusability

Elon Musk

Building a factory is
‘100 times’ as hard as
building a car.

28

• The current mainstream approach to organize and control the
operations of so-called software factories is a methodology called
DevOps to integrate and automate the work of software development
(Dev) and IT operations (Ops).

• DevOps integrates and automates the work of software development
(Dev) and IT operations (Ops) as a means for improving and shortening
the systems development life cycle
• an assumption that all functions can be carried out, controlled, and managed in a

central place using a simple code

• tools in Continuous Integration Continuous Deployment (CICD) infrastructure are
in general numerous and versatile

Software Factories and DevOps

Today : a Typical DevOps Environment

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

• A clear need exists for the structured separation and encapsulation of
the various functional tasks performed by numerous versatile tools

 similar to encapsulation of cross-cutting concerns in NS elements

• Various tasks should be model-driven with tool implementation(s)
• Automation server, e.g., Jenkins, Tekton

• Build engine, e.g., Maven, Bamboo

• Automated testing, e.g., Junit, Cucumber

• Automated deployment, e.g., Docker, Ansible

• Quality Control, e.g., SonarQube

• …

From DevOps to Evolvable Pipelines

EMS

Automation Server

Quality Control

Cloud Platform

C2C LMS
Pipeline Pipeline Pipeline

From DevOps to Evolvable Pipelines

• A clear need exists for integrated control systems, to manage and
control end-to-end the building and assembly of software systems

• Such a system needs to encompass the various processes and tools, and
therefore allow
• to breakdown DevOps to increase security and reduce technical debt

• to offer a SBOM (Software Bill Of Materials) for quality assurance

• This is similar to
• MES (Manufacturing Execution Systems) systems, that track and document the

transformation of raw materials to finished goods

• SCADA (Supervisory Control and Data Acquisition) systems that control
production processes in real-time, in manufacturing

From DevOps to Integrated Control Systems

• An NST software factory needs to encompass assembly lines for
• NST code generators, e.g., expansion resources, runtime libraries

• Runtime libraries and expansion resources

• NS software applications, e.g., web information systems, tools and plugins

• An NST software factory needs to integrate build processing steps
• Expanding and building

• Unit testing and reporting

• Deploying and integration testing

• An NST software factory needs to support
• Harvesting and Re-injection of custom code

 Systematic rejuvenation

From DevOps CI/CD toward CI/CD/CR

From DevOps to Software Assembly Units

Analyze

Repository

Model

Custom code

Config settings

Automation server

Expand

Expansion
Resources

Codebase

Source
Scripts

Markup

Harvest

Registry

Build

Runtime
Libraries

Artifacts

Expanders
Runtime Libs
Executables

Deploy

Images

Servers

App Servers
mServices

Test
Analyze

Reports

Coding
Testing

Libraries
Test

Expansion
Resources Runtime

Libraries Executables

Base
Images

Code Quality
Test Coverage
Dependencies
Vulnerabilities

Documents

Jenkins

Bitbucket

Nexus

Maven

SonarQube Renovate

Docker

Dependency-Track CucumberSourcegraph

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

• Structural rejuvenation

• According to different modes

• For single, significant observation

• Under normal market conditions

The State of our Rejuvenation Factory

• Continuous development
• Applications in full or extended development

• Several applications have dedicated expanders

• Daily build and test, bi-weekly deployments

• Updating dependencies
• Similar to traditional CI/CD, cadence as above

• Rejuvenating skeletons
• Expanders follows same cadence

• Rejuvenated skeletons in production (bi-)monthly

• Structural rejuvenation of skeletons across application landscape, the CI/CD/CR
has only been realized the last 4 to 5 years

The State of our Rejuvenation Factory

• Replacing technologies
• Throughout the years, support has been introduced in logic/data layer for

• Additional databases

• Additional providers for transactions, persistency, access control

• In the early years, systematic migrations have been done in view/control layer
• MVC MVC: Cocoon to Struts2

• MVC MVC-MVVM: Struts2 to Struts2/Knockout

• In recent years, technologies were introduced without systematic migration
• JAX-RS in control layer

• Angular in view layer

• Systematic migration seems to be hampered by discipline creep

The State of our Rejuvenation Factory

• A Software Manufacturing Control System is being developed
• Aggregated views are provided across

• Time

• Assembly unit hierarchy
• components, libraries

• Expander bundles

• Aspect views are provided based on
• Custom code

• Quality metrics

• Test coverage

• Model size

• Dependencies

• …

The State of our Rejuvenation Factory

• Aggregated views

The State of our Rejuvenation Factory

• Aggregated views

The State of our Rejuvenation Factory

• Aggregated views

The State of our Rejuvenation Factory

On the State of our Rejuvenation Factory

• A control layer should allow to optimize conditions and improve output
in the software factory, ideally on a continuous basis
• Surfacing the various views on a continuous basis could facilitate

• Instantaneous assessment of exposure to vulnerabilities

• Continuous assessment of impact when retiring technologies

• Continuous assessment of importance of in-house libraries

and guide the allocation of development resources

• Including the expanders in the factory control system could be pivotal for
• Trust in the use of (additional) expander bundles

• Adoption of expander bundles from partners into the factories

The State of our Rejuvenation Factory

On the State of our Rejuvenation Factory

Combining DevOps and Normalized Systems Toward Software Rejuvenation Factories

Overview

• Introduction

• The Need for Software Evolution

• The Premise of Normalized Systems

• On Software Factories and DevOps

• Toward Rejuvenation Factories

• On the State of our Factory

• Conclusion

• We have argued that strong indications exist for systemic issues in
software evolution and maintenance

• Our work on NST aims to create more evolvable software systems

• Engineers have been striving to produce software in a more controlled
and industrial way, currently using a methodology called DevOps

• We have described our approach to combine NST and DevOps to create
evolvable software systems at scale in so-called rejuvenation factories

• An overview was given of the current state of our rejuvenation factory,
including some key figures, control mechanisms, and potential issues

Conclusion

• Mannaert Herwig, McGroarty Chris, Gallant Scott, De Cock Koen, Integrating Two Metaprogramming Environments :
An Explorative Case Study : ICSEA 2020 - ISSN 2308-4235 - IARIA, 2020, p. 166-172

• Mannaert Herwig, De Cock Koen, Uhnak Peter, On the realization of meta-circular code generation : the case of the
normalized systems expanders, ICSEA 2019 - ISSN 2308-4235 - IARIA, 2019, p. 171-176

• De Bruyn Peter, Mannaert Herwig, Verelst Jan, Huysmans Philip, Enabling normalized systems in practice : exploring a
modeling approach, Business & information systems engineering - ISSN 1867-0202 - 60:1(2018), p. 55-67.

• Mannaert Herwig, Verelst Jan, De Bruyn Peter, Normalized systems theory : from foundations for evolvable software
toward a general theory for evolvable design, ISBN 978-90-77160-09-1 - Koppa, 2016, 507 p.

• Mannaert Herwig, Verelst Jan, Ven Kris, Towards evolvable software architectures based on systems theoretic stability,
Software practice and experience - ISSN 0038-0644 - 42:1(2012), p. 89-116

• Mannaert Herwig, Verelst Jan, Ven Kris, The transformation of requirements into software primitives : studying
evolvability based on systems theoretic stability, Science of computer programming - ISSN 0167-6423 - 76:12(2011), p.
1210-1222

• Mannaert Herwig , De Bruyn Peter, Verelst Jan, On the Interconnection of Cross-Cutting Concerns within Hierarchical
Architectures, IEEE Transactions on Engineering Management - ISSN 1558-0040 - 69:6(2022), p. 3276-3291.

• Normalized Systems Foundation Lectures : https://www.youtube.com/c/normalizedsystems

• Normalized Systems Documentation and Tooling : https://foundation.stars-end.net

Some References

https://repository.uantwerpen.be/link/irua/164962
https://repository.uantwerpen.be/link/irua/164962
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.124661%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.100309%7Eirua
https://repository.uantwerpen.be/link/irua/149301
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.124661%7Eirua
https://repository.uantwerpen.be/link/irua/136759
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.97407%7Eirua
https://repository.uantwerpen.be/link/irua/93405
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.97407%7Eirua
https://repository.uantwerpen.be/link/irua/91112
https://repository.uantwerpen.be/services.phtml?service=acadbibart&language=N&extra=a::920.29639%7Eirua
https://repository.uantwerpen.be/link/irua/91112
https://www.youtube.com/c/normalizedsystems
https://foundation.stars-end.net/

QUESTIONS ?

herwig.mannaert@uantwerp.be

