MMEDIA 2024 : Perception and cognition for multimedia users

Initial Methodology of Troubleshooting Assist System for Electronic Circuit Skills Training

Polytechnic University of Japan OTetsuya Hayashi, Kenji Terada, Masaki Endo Tsuyoshi Tanaka and Shigeyoshi Ohno

m243202@uitec.ac.jp

Contents

MMEDIA 2024

1. Introduction

- In skills training at polytechnic college of Japan, dozens of trainees receive training and acquire knowledge and skills from around two instructors.
- In the electronic circuit assembly training, trainees learn a series of processes including design, manufacturing, and operation testing.
- Trainees do not have the knowledge about troubleshoot in each process, and they aren't sometimes able to deal with troubles.
- In particular, troubleshooting during circuit operation tests involves debugging training output make it difficult to find cause of troubles.
- However, there is no existing method for instructors to efficiently teach troubleshooting knowledge and skills to trainees.

2. Problem

Training cycle bottleneck: One Instructor has to deal with multiple trainees' problems simultaneously.

3. Prior research

• Development of electronic circuits included malfunctions as teaching materials and have trainees learn how to repair them[1].

Intentionally defective circuit boards[1]

[1] Masatoshi Saito, [Development and effectiveness of educational materials to improve skills in identifying defective locations on circuit boards] Kairo kiban no furyou Kasho wo tokutei suru ginou wo koujou suru tameno kyouzai kaihatsu to Sono kouka (in Japanese), Polytechnic University of Japan (PTU) Forum 2023, 24-A-3, Nov. 2023.

4. Objective

 Develop an efficient method for trainees to learn troubleshooting knowledge and skills by independently verifying the operation from the assigned circuits presented by the instructor

5.1 Ideas

Combining independent circuit training, the system automatically detects circuit problems and utilizes them for repair.

5.2 Solution

TAS generate circuits automatically with possible defects in operation

Troubleshooting Assist System (TAS)

5.3 Overview of TAS

5.4 Generating defects

5.5 Example: Defect in negative feedback amplifier circuit (excerpt)

MMEDIA 2024

5.6 Matching Troubles

6. Methodology for Evaluating TAS

- Evaluation of TAS functions
 - Troubleshooting comprehensiveness
 - Design error
 - Wrong wiring
 - Short circuit
 - Disconnection
 - IC mistake
 - Wrong direction of parts
- Evaluation of training effectiveness via TAS
 - Measure the time required to complete the training when TAS is used and when it is not used.
 - Compare the measured times.

- Wrong parameter
- Damaged parts
- Bad solder
- Not mounted/assembled

7. Conclusion and Future Works

• Proposing TAS

- Automatically generate defective circuits
- Match the defective circuit with the trainee's circuit and detect the trainee's trouble
- Recommend troubleshooting techniques based on trainees' problems
- Evaluation methodology of TAS functions
 - Troubleshooting comprehensiveness
- Evaluation methodology of training effectiveness via TAS