Analysis of Weather Information and Road Surface Images for Snow Removal Dispatch Prediction

----- (0.325b

Hiroki Okura¹, Soichiro Yokoyama², Tomohisa Yamashita², Hidenori Kawamura²

¹Graduate School of Information Science and Technology, Hokkaido University, Japan ²Faculty of Information Science and Technology, Hokkaido University, Japan Contact email: hirokio@ist.hokudai.ac.jp

The Thirteenth International Conference on Intelligent Systems and Applications INTELLI 2024 March 12, 2024, 12:30 - 14:00, Athens, Greece

harmo-lab^{.jp} 調和系工学研究室

Education

- second-year master's student at the Graduate School of Information Science and Technology, Hokkaido University, Japan.
- Research Area
 - image recognition, system development, snow removal dispatch prediction

Background

- Road snow removal operations
 - Essential for maintaining winter road traffic
 - The snow removal budget in Sapporo City, Hokkaido exceeds 1.2 billion EUR.[1]

- Burdens due to shortage of workers and aging workforce
 - Addressing the shortage of workers with single-operator snow removal vehicles
 - Ensuring safety in snow removal operations with biometric sensors
- Burden exists within snow removal dispatch decisions.
- Methods for snow removal dispatch decisions
 - Manager makes first decision based on weather information at 16:00.
 - Manager makes final decision based on snow patrol at latenight.

[1] The actual expenditure on snow measures-City of Sapporo, https://www.city.sapporo.jp/kensetsu/yuki/library/budget.html, (retrieved: 2, 2024)

Background

- Challenges in snow removal dispatch decisions
 - ①Manager makes decisions alone.
 - To streamline collecting information, support is necessary.
 - ②Even experienced managers find it difficult to make decisions at 16:00.
 - To make it easier for anyone, high-precision prediction function is necessary.

Snow patrols are time-consuming and dangerous.

- To eliminate direct patrols, remote checking of snow conditions is necessary.
- - To enable workers to understand dispatch without waiting for late-night communication, sharing of information is necessary.

<u>Collection and visualization of on-site data, as well as</u> <u>high-precision dispatch prediction function are necessary.</u>

Related Research

- Data visualization and analytical inference are effective.
 - Visual Analytics[1]
 - Visualizing and analyzing complex data supports decision-making.

Visualizing snow-related data and predicting

- Remote presence using cameras improves operational efficiency.
 - Operational efficiency through remote presence[2]
 - Remote presence using cameras streamlines the need to be physically present.

Applying remote presence to snow patrols

- Weather information as a factor in snow removal dispatch
 - Optimizing snow removal operations based on snowfall predictions[3]
 - Predicting snowfall based on meteorological satellite and radar observation data supports decision-making in snow removal.

Using as input for dispatch prediction

[3]Tetsuro Akimoto, Michihiro Teshiba, Ayano Ueki: Applications of novel weather information: optimization for deployment of snow removal groups, Artificial Intelligence and Data Science, 3, J2, 215-222, (2022)

 ^[1] James J. Thomas and Kristin A. Cook : Illuminating the Path: The Research and Development Agenda for Visual Analytics, (2005)
 [2] Ryutarou Kimura, Keidai Suda, Hidetoshi Turuta: Examples of remote field supervision, Proceedings of the 65th Hokkaido
 Development Technology Conference (FY 2021), (2021)

Research Objective

- Development of system to support snow removal dispatch decisions using collected data
 - Implementing functions for data collection and utilization
 Collection and visualization of snow removal site data
 Predicting snow removal dispatch using collected data
 - Verifying the effectiveness of system in practical operations

Implemented at Horiguchi Construction Co., Ltd.

Targeted Snow Removal Dispatches

- The target area for snow removal dispatch
 - The urban area of Rumoi City, Hokkaido
 Within approximately 12 kilometers of national road
- The criteria for dispatch
 - Carried out when the snow depth confirmed during snow patrol exceeds 10 cm.
- The average frequency per year from 2018 to 2020
 - Snow patrols: 105 times
 - Late-night snow removal dispatches: 44 times

Support via System Utilization

Traditional methods for snow removal dispatch decisions

Data Collection

- Collecting data necessary for snow removal dispatch decisions
- Details of the data and collection methods

	Data	Details	Frequency	Collection methods
1	Fixed-point camera images	From network cameras installed at 10 locations in Rumoi City	Every few seconds	Via API from network
2	Weather information	Current and forecasted information for each location	Every hour	Via API from WeatherNews Inc.
3	Snow depth	From snow depth gauges installed at 2 locations 10km away from city	Every 10 minutes	Via API from network
4	Dispatch history	Manager's decisions and dispatch records		

Data Collection

- Collecting the information necessary for snow removal dispatch decisions
- Details of the data and collection methods

Data	Details	Frequency	Collection methods	
Fixed-point camera images	From network cameras installed at 10 locations in Rumoi City	Every few seconds	Via API from network	
Weather information	Current and forecasted information for each location	Every hour	Via API from WeatherNews Inc.	
Snow depth	From snow depth gauges installed at 2 locations 10 ¹ away from city	Every 10 minutes	Via API from network	
Dispatch history • Specific measurement value from a single point • High equipment and installation costs				
	Data Fixed-point camera images Weather information Snow depth Dispatch history • Sp • Hig	DataDetailsFixed-point camera imagesFrom network cameras installed at 10 locations in Rumoi CityWeather informationCurrent and forecasted information for each locationSnow depthFrom snow depth gauges installed at 2 locations 10 wavy from cityDispatch historyIssue with snow depth gauge end at 2 location single point • High equipment and installation costs	DataDetailsFrequencyFixed-point camera imagesFrom network cameras installed at 10 locations in Rumoi CityEvery few secondsWeather informationCurrent and forecasted information for each locationEvery hourSnow depthFrom snow depth gauges installed at 2 locations 10 wavy from cityEvery 10 minutesDispatch historyIssue with snow depth gauges • Specific measurement value from a single point • High equipment and installation costs	

Dispatch Decision Support System

- The server collects data from the external database.
- The server responds to the client requests.

Objective

Capturing changes in snow accumulation

Estimation of snow coverage ratio

- What is snow coverage ratio?
 - Quantifying proportion of road surface covered by snow within entire road area

Application of semantic segmentation

- Annotation of 752 images from all 8 locations
- Utilizing the pre-trained model Unet++
- IoU score on the test data : 0.951

Application of the model

Snow Removal Dispatch Prediction

What is a snow removal dispatch prediction?

- Data for prediction
 - Weather information, snow coverage ratio, snow depth
- Prediction model: logistic regression

Information Sharing Screen

Visualizing the collected data from all locations collectively

Objective

- Predicting dispatches from collected data, confirming the system's usability based on prediction accuracy
- Dataset
 - Period
 - December 24, 2022, to February 28, 2023 (67 days)
 - Utilizing the 63 days excluding missing data
 - Contents
 - Weather information, snow coverage ratio, snow depth
 - Collected data observed hourly
 - Forecasted weather information
 - Forecasted for 20:00, 0:00, and 4:00 at 5:00
 - Dispatch history
 - Presence or absence of snow removal dispatch from 0:00 to 6:00
- Method
 - Making Predictions hourly from 6:00 to 0:00
 - Comparing between predicted results and manager's decisions at 16:00

Expt.1 Accuracy Investigation of Prediction

Input features for prediction

Determining features based on the results of preliminary experiments

16

Prediction	Input features			
timestamp	Real-time observational data	Forecasted data	Past data	
From 6:00 to 16:00	Snow coverage ratio, Snow depth, Temperature	Wind speed at 20:00 and 0:00	None	
From 17:00 to 19:00	Snow coverage ratio, Snow depth, Temperature	Wind speed at 20:00 and 0:00	Temperature at 16:00	
From 20:00 to 23:00	Snow coverage ratio, Snow depth, Temperature, Wind speed	Wind speed at 0:00	Temperature at 16:00	
0:00	Snow coverage ratio, Snow depth, Temperature, Wind speed	None	Temperature at 16:00	

- Creation of the dataset
 - Dividing the number of locations and the presence or absence of dispatch into 5 partitions.
 - Setting a seed value at dividing and preparing 5 datasets
- Evaluation metrics
 - Accuracy, F1 score.
 - Using the average values of 5 datasets.

Expt.1 Accuracy Investigation of Prediction

Comparison results between predicted results and manager's decisions at 16:00

Prediction timestamp

- Accuracy increases from 6:00 to 16:00, maintains high accuracy surpassing the manager's decisions after 16:00.
- although the learning process utilized forecasted weather information at 5:00, in actual use, it is updated hourly, which could further improve the accuracy.

Effective for the system

- Objective
 - Confirming whether the system effectively addresses the challenges of snow removal dispatches
- Utilization of the system
 - Duration

December 27, 2023, to January 29, 2024.

- Method
 - Interview survey with 1 manager responsible for dispatch decisions
 - Questionnaire survey with 5 snow removal workers

Expt.2 Validation of System Effectiveness

Interview survey

Regarding dispatch decisions

Q1: What is the traditional method for making decision?

A1: At 16:00, I check the snowfall condition and weather forecast, and make decisions based on my experience.

Q2: What is the method using the system?

A2: I make quick and easy decisions by checking the data.

Q3: Does it help reduce the burdens?

- A3: High-precision predictions reduce the burdens of information gathering and alleviate the sense of responsibility when decisions are reversed.
- Regarding snow patrols

Q1: What is the traditional method for snow patrols?

A1: I conduct snow patrols even with a small amount of snowfall, and it takes more than an hour to complete the patrols.

Q2: What is the method using the system?

A2: I check the data before the patrols and adjust our approach based on whether to focus on specific locations for patrols or not to conduct.

Q3: Does it help streamline snow patrols?

A3: It halves the total time required for traditional method over the entire season.

Conclusion

The system reduces the burden of dispatch decisions and streamlines snow patrols.

Questionnaire survey

- Q1: Are you using the system?
- "Yes" from 2 respondents, "No" from 3 respondents.
 - Introduced during the busy winter season, and thus not yet fully implemented.
 - The unused workers were encouraged to use it and then provide feedback.
- Q2: Could you imagine whether there will be snow removal dispatch or not before communicating at late-night?
- "Yes" from 5 respondents
- Q3: Did imagining make it easier to prepare for dispatch and feel more relaxed?
- "Yes" from 4 respondents, "No" from 1 respondents.
 - Specific examples of burden reduction
 - Adjusting sleep time by preparing in advance
 - Reducing family stress by decreasing late-night calls
- Conclusion
 - The system reduce the burden of late-night dispatch for workers.

Conclusion

- We develop a system to support snow removal dispatch decisions using collected data.
 - Collecting camera images, weather information, and snow depth
 - Implementing data visualization and snow removal dispatch prediction
- The system predicts dispatches with high accuracy, close to the managers' decision.
 - As the dispatch time approaches, it becomes possible to predict with high accuracy.
- The effectiveness of the system was validated through interview and questionnaire surveys.
 - Effective in addressing challenges in snow removal dispatches.