A P>~ HOCHSCHULE
IARIA 7= SCHMALKALDEN

UNIVERSITY OF APPLIED SCIENCES

The Thirteenth International Conference on Intelligent Systems and Applications
INTELLI 2024 — Athens, Greece

,Adaptive Tracking Control for Biologically Inspired,

Nonclassical Motion Systems “
(March 12th, 2024)

Carsten Behn, Schmalkalden University of Applied Sciences, Germany




A P>~ HOCHSCHULE
2 Intro — Presenter Behn E e

Short Resume of the Presenter

Carsten Behn received the diploma degree in
Mathematics (2001), the Ph.D. degree in Mechanical
Engineering (2005) and his habilitation in

Mechanical Engineering (2013) with venia legendi in
,“ “Technical Mechanics”, all from Technische

@‘@ ,‘ Universitat llImenau, Germany. Since 2019 he is a full
: professor at Schmalkalden University of Applied

-

Sciences, Chair “Applied Mathematics, Mechanics
and Dynamics of Machines”. His research interests
include mechanical and mathematical modeling,
adaptive and robust control of uncertain systems,
with view to bio-inspired mechanical motion
systems.

Contact:
Carsten Behn, Dept. of Mechanical Engineering, Schmalkalden University of Applied Sciences,
Blechhammer 4-9, 98574 Schmalkalden, Germany

Email: c.behn@hs-sm.de
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Campus: top view
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« founded July, 1st in 1902

» approx. 2500 students (Summer Semester 2022)

» 5 departments (Electrical Engineering, Mechanical
Engineering, Business and Economics, Business Law,
Computer Science)

» approx. 25% of the students at Dept. Of Mechanical
Engineering

« 15 Bachelor- and 8 Master-courses
2 extra occupational Bachelor- and 7 Master-courses
(,Business Law" and ,Business Economics®)

« studies with a strong orientation / relation to practice and
professional training
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“Adaptive Tracking Control for Biologically
Inspired, Nonclassical Motion Systems”

Worm-Like Locomotion Systems |

o Iqor Zeidis
Wormlle (WLLYS)
Locomotion Systems ?Aechanicls Of

_ 1. Motivation & Introduction errestria

S 2. Modeling Locomotion
Cﬂ:{m “M}w.o 3. Kinematics Winafoason

4. Gait Generation ———

5. Dynamics
6. Actuator Models
7. Adaptive Control
8. Simulations Part 1
9. Refinements
10. Simulations Part 2
11. Conclusions Part 1
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Focus on non-pedal / non-wheeled locomotion systems

biological example: the earthworm

§ e
Py v a4
o >

- peristaltic motion systems
- no concertina motion like snakes (sidewinder)

- possible applications / advantages in
biologically inspired Robotics
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A 1. Motivation & Introduction
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Possible applications:

- inspection of cable and pipeline systems

- planned application in medical engineering
(Minimal Invasive Surgery / Endoscopy)

- exploration in impassible regions (e.g., after
earthquakes)

Slide 011
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Necessity of motion systems with low space requirements

Space required for different forms of Search for survivors in a collapsed
@Comotion [Saga, 2004] building [Radio912, 2009] y
Y

Goal: Development of locomotion systems with low space requirements

Aim: - understand how such systems move
- following analytical methods
- well-founded mathematical framework !!! (control theory, e.g.)
- and then build up prototypes to verify the theory

Slide 012
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1. analyzing live biological systems, e.g. vibrissae,
2. quantifying the mechanical and environmental behavior: identifying and
guantifying mechanosensitive responses (e.g., pressure, vibrations) and
their mechanisms as adaptation,

3. modeling live paradigms with basic features developed before,

4. exploiting corresponding mathematical models in order to understand
details of internal processes and,

5. coming to artificial prototypes (e.g., sensors in robotics), which exhibit
features of the real paradigms.
Important:

- focus is not on “copying” the solution from biology / animality

- not to construct prototypes with one-to-one properties of, e.g., a vibrissa
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Different input possibilities Control goals \
(open-loop/ closed-loop design) locomotion, track prescribed
motion pattern, stability, Optimization criteria
robustness (energy, time, ...)

/

mechanical motion system

u(t) uyt) uyt)

m
F» C12 F» ) F»
ANV Y
| 3 x(®) yo)
ld23 //// s
ﬁ__> \ 4
9 v mathem.
- model
Uncertainties _—— /
- system parameter Tools
- unknown influences from environment ,» Friction calculus, system
(impulses, periodic excitations, (classifications, non- theory (")DE theory
ground interaction, ...) linear jump functions, (existence problems)
- constraints, boundary limits approximations, num. control theory (adaptive)
(differential constraints) T aspects in simulations)
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Common problem to be solved in specific languages (live scientist / engineer)
=R

=

LIVE SCIENTIST

To what extend can a human
brain be damaged without
several lost of motor function
of the owner?

-3

ENGINEER

How many system information are
needed to guarantee desired pro-
perties like stability of motion,
controllability of the system or
path following?

ﬂy(t)

c=7? k
o

e WA ==

I
~
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Basis of our theory:

I.  Aworm is a terrestrial locomotion system of one dominant linear dimension

with no active legs nor wheels.

ii.  Global displacement is achieved by (periodic) change of shape and interaction

with the environment (undulatory locomotion). / l
Change of shape: peristaltic rectilinear locomotion Interaction:
- pumping” of worm segments surface endowed with
spikes

preventing velocities
from being negative

A € ' > B

22

LY
[

Direction of Movement

biological paradigm earthworm [Bailey, 93]

Undulatory locomotion means a temporal process during which the internal actuators receive an activation signal and generate a
(periodical in time) local deformation (contraction) which via interaction with the environment results in a global change of location.
[Ostrowski, J.; Burdick, J.; Lewis, A.D.; Murray, R.M.: The mechanics of undulatory locomotion: the mixed kinematic and dynamic
case. Proceedings of the IEEE International Conference on Robotics and Automation, 1995.]

A first bristle model of Gavin Miller (1988)
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mass points m

spiky
structure il
S
[ 1y
massless ] L
links: /, 7z 7 72
Kn Ki ){i_-l K.l KU
‘:" S - X

First: surface endowed with spikes (later on friction) === thorough kinematic theory

GOAL: specific actual link lengths (gait) to achieve desired motion

Slide 017
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# contracted element

E expanced elermnent

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7 (Phase 1)

[Slatkin, Burdick et. al. 1995]
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Theory:
Slatkin, Burdick et. al. 1995

Chen, Yeo & Gao 1999/ 2001

Prototypes:
Chen & Yeo 2002

Nakamura et. al. 2006
Zimmermann et al. 2009

Soek et. al. 2010

view purely on kinematics to
determine a specified gait
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- not only to determine a specified gait in kinematics

- moreover: adjustment of desired speed
- fast, i.e., only a few mass points should be at rest (active spikes)

- realizable?
- look at actuator and spikes forces:
- need for high spikes forces?
- increase number of active spikes
- diminishes speed ===} start again

- What's the right number of active spikes?

Need for involving the

external forces (viscous friction,
spikes forces, e.g.) and internal
forces (actuators, e.g.)

m==)> include 1

Slide 019
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B l; - l,
X, X; Xi 1 X Xo
- S, -
Spikes (kinematic constraint) actual links lengths [ :== xj_1 — x;
r; >0, Vi€0,...,n distances of mass points from head

l / Sz'!:ilf()—a?i:ilj
71=1

LEO—SZEO(:}CEOzSZ Vi <= LIIZZ'::}.SO—S%,V@

1

2o > Vp := max {S;|i € {0,...,n}} - w unkown

. - ,rigid’ forward velocity part
= Zo= Vot w_’ w=0 - drive must guarantee w = 0
and z; =V — S5; +w (no skidding forward)
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Simple kinematic theory

1. Prescribe: [;(-) € D*(R) : t > 1;(t) >0, j=1...n.

2. Determine: S; := le . Vo :=max{S;li € {0...,n}} € D'(R).

1=1
t
3. Result: xo(t) = /Vo(s) ds, x;(t)=x0(t)—S;(t), 7=1,...,n.

0

===) derive appropriate gaits, how?

Slide 021
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Example: n = 2 =0 5 all By cyclically repeated
pure kinematics G | 1, consecutive spikes active
mode = {1, 0, 2} . 1 — () | £(1)
s -1 1
1 0 0 -1
1 0

Which gait
for what kind
of motion?

l

DYNAMICS
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Aj
_“m[— : _:lui —uil:_\/ -\)—]“i —ui[_ i-1 _:lui_l inner forces
~
i i1

Z; Zi1

external forces

- g; external impressed force, e.g., resultant of weight ['; , visc. friction —ko Z;
- i stress resultant, cut force

- Z; external reaction force caused by the kinematic constraint (spikes)

'

complementary slackness condition ©; >0, 2z, >0, z;2z;,=0 Vi

satisfied by z;(fi, @) = —% (1 —sign(d;)) (1 — sign(fy)) fi

l ( f; resultant of all further forces acting on masspoint i)

Newton's 2nd law: m &; = ¢g; + p; — ptiv1 + 25, Vi

::fi Slide 023
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summing up all the Newton‘s 2nd laws for the mass points, using ¢; := —ko &; — I';

mo* + kov* + 1" = 27

. 1
from kinematics: ©; = V, — .S, = I = i
X 0 +w x; n—l—lgx
S v =V —— > 5+
v = — . TW
0 n+1 -
\ —5

=:Wy (defined via gait!!)

This yields: m ti+kow +m Wo + ko Wo + T = 2*

=.0

=mw+kow+o=2" central equation

with|w >0, 2* >0, wz" =0| with slackness condition

Slide 024




P>~ HOCHSCHULE
/SCHMALKALDEN

A :
22 5. Dynamics

Remind off mw +kow +o =z withw >0, 2" >0, wz*"=0

Observations:
1. No skidding forward w = 0 < z* > 0 (at least one active spike, obvious)

2. 27 =0=w>0,ie, mw+tkow=—-—0= o0c<0
spikes forces zero, no active spike, i.e., skidding forward

Finally: 1.) Prescribe gait and surrounding (friction, landscape)
= we have lj, ij, Si, Sz', Vo, Wo, W(), ko, I' = 0 = O'(t)

2.) Gait, such that N (N —a)
a) no skidding forward o (t) > 0 = mel’ w? > <T*
s
N (N —a a
b) finite strength of spikes m e [° w? (2 ) < N z—I"
s

Gait construction considering dynamics!!

Slide 025
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For detalils see:

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

ELSEVIER journal homepage: www.elsevier.com/locate/robot

Gait generation considering dynamics for artificial segmented worms

Joachim Steigenberger?, Carsten Behn ™*

# Institute of Mathematics, limenau University of Technology, Weimarer StrafSe 25, 98693 Ilimenau, Germany
® pepartment of Technical Mechanics, limenau University of Technology, Max-Planck-Ring 12, Building F, 98693 llmenau, Germany

For more details see:

Joachim Steigenberger, Carsten Behn
Worm-like
Locomotion Systems

[ _ R, &
/’?‘ﬁf'

o koo 68

e, x./.-x-o

3 But: How to realize a gait???
=)
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Aj
0., I:_ i _:lui _“i[—\/ -\)_:lui —ui[_ i-1 —:l“i-l inner forces
—

2

Z;

Black Box
output /;()

(via stepping motor, piezo, ...)

i1

Zi1

external forces

White Box
one possibility: output force 1; (t) (impressed)

-~ 1
| r— |
| |
| |
| NV ,
i : N\ : -1
L ~ N

pi(t,x, @) = c(ri—1 —x; —1°) + koo(Li—1 — &5) + ui(t)

l u; (t) — control force

(Control) Theory

Slide 027
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Inputs
u(t) = 2@ —— b
\@) —0O =0
Outputs - ~ — ~ 3
. xo(t)—xl(t) 7N‘ [1(t
y(t) = (ml(t) — m5(t) desired distances: References Yref(t) = 1)
_ [2(%)
distances

prescribed gait from kinematics

problem:
- lack of precise knowledge of actuator data

- moreover, worm system parameter not exactly known as well
===) Uuncertain systems

task:

- design a controller which generates the necessary output forces on its own

- no identification, simply controlling of the WLLS in order to track a given
reference trajectory (kinematic gait)

===> movement of the system

Slide 028
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solution:
- adaptive tracking controller (learning controller)
- has to achieve ) -tracking (not exact tracking):

(i) every solution of the closed-loop system is defined and bounded on R~ ,
(i) the output ¥(-) tracks the given reference signal with asymptotic accuracy \ .

. A-tracking => simple controller:
e(t) = y(t) — Yret(?t)
u(t) = k(t)e(t) + & (k(t)e(t)) ;
k(t) = v (max{0,[le(t)] —A})
t A>0,y>1,k(0)eR

Remark: Spikes (complementary slackness) force for dynamical control system

i) = — (1= sign(2) (1 - sign(f:) f

Slide 029
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General
System
Class:

Properties:

y(t) 0r, 0 y(t) 0 0
g(t)| = [0 A2 0O g(t) | + |G| u(t) + {gi(s1(8), y(t), z(t))
=(t) 0 Ay As| \=(¢) 0 g2(s2(2), (1))

y(ﬂ} = ?J{] . y{'[]] e yl . z([}} = 2z ,
. y(t) 51}(5) . u{t] e ]EE”": Z(t] e Rn—Em
e real matrices A, , G € R™*™m, A, € R(-2m)xm A ¢ R(n—2m)x(n—2m)

e . > 2m.

e quadratic, nonlinearly perturbed multi-input w(-), multi-output (MIMO) y(-)
control system with strict relative degree two;

e o(G) C C., i.e. the spectrum of the ‘high-frequency gain’ G lies in the open
right-half complex plane;

e unperturbed system is minimum phase (stable zero dynamics): o(A;) C C_;
e A; is coupling term, necessary for underactuated systems:
e functions g, and g2 are continuous and linearly affine bounded;

® s;(+) and s;(-) are (bounded) disturbance terms, where we have to claim the
following dependence (all theorems and results remain valid):

Sl(t} = 1n [:t . 'y{t} y(t), z(i’-} 1““)) and s3(t) = ﬂ-’?{te’y(f} ,'Q(t} . z(t) 1““)};
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Theorem:

Let A > 0, yref(+) € R, 51(+) € L®(R>0: R") and s5(+) € L(R>0; R%). Then the
presented adaptive A-tracker applied to every system of the general system class
yields for any initial data (yo,v1.20,ko) € R™ X R™ X R" 2" x R

y{f) == C(t)a 'y{U} — Yo )
C(t) = AC(t) + fi(s1(2), y(t), 2(t))

=G |k(t) (y(t) = yeet(t)) + k(®) (C(2) = Grer(t))

+ max {O, |y(t) — yres(t)|| — )L}E (y(t) — yrcf(t))]a ¢(0) =,
2(t) = Asz(t) + Ao C(t) + fa(s2(t), y(t)), z(0) = zo,

(1) = max {0, ]| y(t) = per(t)]| = A} K(0) = ko, |

which has a maximal solution (y,{,z,k):[0,#) — R™ x R™ x R" 2" x R with:
(i) t' = oo, i.e. there does not exist a finite escape time;

(ii) limy ., k(%) exists and is finite;

(iii) the solution, {(-), 2(-) and u(-) are bounded:;

(iv) limsup,_, ||y(t} - ymr(t)H < A

The presented controller

achieves lambda-tracking!
(PhD thesis C. Behn)
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- Prescribe an (optimal) gait from the kinematical theory.
- This gait serves as a reference signal to be tracked by the controller.
- Controller adjusted distances between the mass point

- Results in a locomotion of the whole system
(while in contact to an environment)

- The adaptive nature of the controller is expressed by

- Obviously, for numerical simulation, these parameters / system data is fixed
and known

- But, the controllers adjust their gain parameters to each set of system data.

Slide 032
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myp=m; =mg=1, ¢=10, kgp =5

ku —_ 0, Fl,2,3 = 2.7

(ensures kinematical theory to be dynamically feasible)

k(0)=0, A=0.2, v=100

Gait from Kinematics

( )

upper curve: |(t)
lower curve: |,(t)

(one resting point mass at
any time: fast in-plane gait)

Slide 033
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: worm with spikes and adaptive control

Outputs ° - —/ ] .
and tlfjbes T vt | Gan
| | | parameter
- good tracking behavior after transient
Worm phase
motion ¢ - average speed = 0.4938

- monotonic increase and convergence
of gain to a finite limit

Time t

Slide 034
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Remark
- high gain values, k still stays constant although control objective is achieved

- high feedback values

- caused by monotonic increasing of the gain parameter (also literature)

3 — Stages — Adaptation — Law:
1. increasing k(.) while e is outside the tube,
2. constant k(.) after e entered the tube - no longer than a pre-specified duration

of stay,
3. decreasing k(.) after this duration has been exceeded:

oy (le@ = 2), e@] > A
k) ={ o, le@)|| < A) At —tp < ta)
o k(t), le@®)] < X) A (= te > ta)

J=U.2>U, t&r=1

Slide 035
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: worm with spikes and new adapter

Outputs = = i | Gain
and tubes B ™ § | parameter
- good tracking behavior
Worm - decreasing of the gain
motion & - minimum high-gain k*=100
- average speed = 0.4859

Time t
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- practical failing of ideal spikes (finite strength) requires friction

- new : Coulomb law - stiction combined with dry
sliding friction

- modeling makes friction a function of arguments

F

- projection to the (v,F)-plane shows
the typical F vs. v diagram that

- this is often preferred in literature

- but there F appears as a

F set-valued function, here
Y T/FO/ well-defined
gy / - tackled in dynamics by means of
T fitting theories

0 - now: relaxation ...
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- Relaxation:
€ blow-up interval (Karnopp), € replaces computer accuracy

F A F A F A
t Fo ataF, Eo
e M A e’
> - > =) R
Y% -€ € \Y% -€ € \
_F+ - _F+ _F+
+ - +
o s £,
- friction law with stiction - status v=0is blownupto an - adequate, smooth
in the literature Fg=Fx(v) interval for simulating stick- approximation, but...
- grasp v=0 with PC? slip
- really stiction? - Karnopp model

- discontinuities (jumps) - discontinuity still present
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—fa sv=0A fo € [—Fo_aF0+]
F~ ,v<0 V ('UZO/\.fa<_F0—)

—Ft ,vo>0 V (UZO/\fa>F0+)
W, fa) = Fr(v, fa) = {

- theoretically transparent, handy in computing, simpler than various
sophisticated ones in literature and captures stick-slip

—Ft ,v>e VvV (v€E[0,e] A f, > F)
(vafa) — FR(va fa) — { —Ja |'U| SEA JE [_F0_7F0+]
F~- ,v<—e V (’U € [—&,0] A fu< _Fo_)

- mathematical model in closed analytical form
(jump approximation with a smooth Heaviside function):

H(a,b,z) := %{ tanh (A (z — a)) + tanh (A (b — m])}

===)> N0 theory of differential inclusions is necessary!
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Graph of the friction function: with A=100, € =0.5 (only for visualization of smoothness):

each

space curve
{v, T, Fr}
has to lie

in

this graph

friction force

velocity
sum impr. forces

- but: randomly changing coefficients again requires adaptive control
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160

: worm with new friction (only stiction F;=16, F,"=3) and new adapter

Outputs | , N > | Gain
and tubes | | ° parameter
- stiction values guided by spikes theory
Worm ¢ - short backward motions
motion ¢
- afterwards coincidence to previous
motions
S e © s - average speed = 0.4857
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. worm with new friction (only sliding friction F-=16, F*=3) and new adapter

35

Outputs . 5 5 L % Gain
and tubes N | | 8 | | parameter
) - replacing stiction by sliding friction values

- good tracking

Worm ¢ _

motion - but ob_serve an _unsatlsfa_c_tory external

behavior (negative velocities)

- owing to stiction cancelling

; z = - average speed = 0.2399

Time t
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Outputs
and tubes

Worm
motion

Output y1 and strip

Output y2 and strip

Worm Motion

- worm wit

35

h new friction (stictio

w
T

n
&)

N

o

Time t

Time t

Time t

Gain k

P>~ HOCHSCHULE
7= SCHMALKALDEN

n & sliding friction) and new adapter

140

120
100+
By ] Gain

sol | parameter
40

20

Time t

- Fy=18, F,*=3 ,F=8, F*=1, two sliding
mass points to be compensated by
stiction

- good behavior as before

- bit smaller average speed = 0.4793

- If F;"=16 worm runs backwards

- we need F,=16+2, two sliding mass
points at every moment
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Conclusions:

- (adaptive) control has been directed to ensure a prescribed gait

- obviously that a changing environment or changing type of interaction
influences the global movement and the driving forces

- simulations have shown that adaptive control is promising in application
to WLLS

- points out: stiction is the essential part of Coulomb interaction with the ground
- a careles reducing of the interaction to pure sliding friction
- Improved adaptive controllers are useful and should be developed further

- summarizing: adaptive control with minimal knowledge of system parameters
(self-adjusting, robust and universal)
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NOW:

- transfer results to Snake-like Locomotion Systems

- Snakes: ,definition” — 2-dimensional movement (no longer rectilinear motion)

Snake-Like Locomotion Systems

12.
13.
14.
15.
16.
17.

(SLLS)

State of the Art

Kinematics — Model 1
Kinematics — Model 2
Dynamics & Adaptive Control
Conclusions Part 2

Future Work
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[SlimSlime]

D-Snake?2]

Slide 046




A P>~ HOCHSCHULE
2ua 12, State of the Art E SCHMALKALDEN

Model, Proto- | Dimension Active joints Peristaltic Undulation Locomotion

type

Worm (Bio) 1D (3D) allusively (vari- | yes yes rectilinear

ated linear mo-
tion)

Snake (Bio) 2D, 3D (3D) yes (vertebrate) | no (not by | yes rectilinear,

definition) serpentine, con-
certina, crotaline
masspoint- 2D no no yes rectilinear,
model accord- serpentine(?)
ing to [13]
ACM-IIL, -R2 1D (with | yes no yes “swimming”
lateral move-
ment)

ACM-R3, -R4 3D yes no yes “swimming”,
serpentine,
concertina

ACM-R5 3D yes no yes serpentine,
concertina,
swimming

ACM-R7 3D yes no yes concertina,
“winding”

ACM-S1 iD allusively (like | no yes rectilinear(?),

WOTrms) concertina

Aiko 3D yes no yes concertina

AmphiBot 3D yes no yes “swimming”,
swimming
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Name Dimension Active joints Peristaltic Undulation Locomotion

Genbu 2D no no no driving

GMD-Snake iD yes yes' yes rectilinear, con-
certina

GMD-Snake 2 3D yes no yes rectilinear, con-
certina

Kairo 11 3D yes no no serpentine/ driv-
ing

Kohga 2D/3D yes no no driving

Kulko 3D yes 1no yes serpentine,
concertina,
swimming

OmniTread iD yes no yes concertina, driv-
ing

Perambulator I | 3D yes no yes “swimming”,
serpentine,
concertina

Polychaete- 2D yes no ves “swimming”

Roboter

Rigid-Type 2D yes yes yes rectilinear, con-

Robot certina

Screw-Drive 2D/3D yes no yes driving, con-

Mechanism certina

Robot

Shm Slime | 3D yes no yes concertina

Robot

SoftWorm 1D no yes yes rectilinear

(MeshWorm)

WormBot 2D yes no yes “swimming”
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Interim Conclusion:
18 prototypes use active joints for their movement
18 prototypes use an undulatory locomotion pattern
« 6 prototypes perform a “swimming” movement
« 3 prototypes use wheels or something similar for a straight driving locomotion

Focus now:
« still using undulatory locomotion
* introducing peristalsis of WLLS to SLLS
* using passive joints

Goal:
« easy description of a multi-segmented system in kinematics and dynamics

« development of steering mechanisms to change movement direction and to
avoid obstacles
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masspoint model of a SLRS

masspoint |

’ _ J'segmenl | :
|l
(x3.¥3) . o ‘
‘? _ (X0:¥0) T _
skid
3T spikes HTTWJ
= ! [':{1.!}?1-]
By X (%,,¥2) single segment with skid
'
model with constant link lengths: 1;(¢) =1 = const, Tg(t), wvolt)
o =0601+%
I =0+
Vi = . cos(vi—14+0;_1—06;) . . :
i i—1 cos(7:) {[]?,__EN—I}:{UV..,R} ,j=1#0
jjo — Vo COS(F())
Yo = vgsin(lg)
@V _ Vi sin(v;—14+0;_1—0;)—wv; sin(v;)

l
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Skid Control Mechanisms:

- classic tractrix T, =

- directional stable control I =

- obstacle avoidance backwards T, —

- obstacle avoidance forwards ro_

1

Test paths from literature:
L // /"I' _I ™~ -
: /// R I / / \\ 1t 10 —
_//// « I \“\__ __/x/ |t | | s . . B X

straight line circular path sinus-shaped path sinus-lane change
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50F

401

301 - —

201

y [m]

10F

0

Segment 0
Segment 1
Segment 2
Segment 3

_10_

-10 0 10 20 30 40 50 60 70
x [m]

classic tractrix

S0F 7

Segment 0
Segment 1
Segment 2
30- Segment 3

40+

20r

y [m]

10+

-10 +

20 £, ‘ s s ‘ s s ‘ s
10 0 10 20 30 40 50 60 70
x[m]

obstacle avoidance backwards

y [m]

y [m]
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50F
401
30r
20+
101
0
Segment 0
Segment 1
-10 s
egment 2
Segment 3
20, ‘ . . . ‘ ‘ . .
-10 0 10 20 30 40 50 60 70
x [m]
directional stable control
50F 7
40+
301
201
10+
0
Segment 0
Segment 1
-10F Segment 2
Segment 3
-20 £,

-0 0 10 20 30 40 50 60 70
x [m]

obstacle avoidance forwards
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G

Example: Simulation of a stable directional control (Kinematics)

50

401

30r

y [m]

_10_

-20

120

100+

80~

20}

Segment 0
Segment 1
Segment 2
Segment 3
0 20 40 60 80
x [m]

segment paths

—— Segment 0
Segment 1
—— Segment 2
Segment 3

40

t[s]

60 80

travel distance

100

UNIVERSITY OF
1.005
1.004
1.003+
1.002
. 1.001;
@
£ 1
>
0.999
0.998+
Segment 0
0.997 - Segment 1
— Segment 2
0.996 Segment 3
0.995 ; ' .
0 20 40 60 80 100
t[s]
segment velocities
60
50+
40+
Segment 0
i anl Segment 1
[ 30 Segment 2
Segment 3
20+ \
10+
Dl 1 1 I .\‘\ 1 i
0 20 40 60 80 100
t[s]
skid angles

HOCHSCHULE
SCHMALKALDEN

APPLIED SCIENCES
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Masspoint model with

lj — t—=1i(t) ,57=1,....n (n=N —1)

Step 1:
- no backward motion due to spikes!!

- realization in kinematics?

- identify reference segment
supporting the motion

Step 2:
- prescribed link lengths in time
(arbitrarily chosen function)

li(t) = lp+ Asin (tfg — Q-Wfo%)
fj (1) = Acos (T.fg — Q-ngj;—,._l) fo

I(t) [m]

link length

%

HOCHSCHULE
SCHMALKALDEN

Segment 1
Segment 2
Segment 3

10
t[s]

15

20
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Step 3:
- model equations

- pumping mechanism changing link lengths (changing shape)
- skid angles can be actively steered

posterior:  v;

anterior: Vi

generally: 0,

i + i
©1 + 7
v; cos(I';)
v; sin(I;)

vi—1 cos(j—1— B)Ol—q—l—l n)

cos(7i)

V441 wb("h+1)+fa+1 g —
cos(Ti—BO; 1) (i = ¢..0) Vie{0,....n} ,j=1i#0

vi—18in(li—1—0:)—wvi sin(vi)
li

O - inputs (i.e., skid control algorithm and link lengths)
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Example: Simulation of a stable directional control (Kinematics)

y [m]

s [m]

40+
30t
20+
10

0 Segment 0

Segment 1

~10} Segment 2

Segment 3

=10 0 10 20 30 40 50 60
x [m]

1001
90~
80~
70r
60r
50+
40+
30+

Segment 0

20+ Segment 1

101/ Segment 2

Segment 3

0 : . . : ,
0 20 40 80 100 120

60
t[s]

travel distance
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G

2.5
2
e
15 :
e Segment 0
2 S t1
E ] — seoment2
> Segment 3
0.5
0 L
-0.5 : ‘ : ' ‘
0 20 40 60 80 100 120
t[s]
segment velocities
60 . . . : :
50/ - -
40t I."I _I".
2 30} ,"ﬂ Y
= Segment 1 I|I
—5 t2 .
201 szgmz:ts L
D 1 ."III i 1 1 L
0 20 40 80 100 120

60
t[s]

skid angles
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Equations of motion

Forces and complementary slackness condition:

Fi = Fii16i-1— Fir1:€+1 + Eie; + Gig;
Ri_ = )\;E_’; + ﬂ--;’_.(jg'.
m;r; = F;+ R;

4 (X3,¥3)

v = 0 A%' > 0 Vi A%' =0

Model equations:

Y, = v;sin(i;

0i—1 Co8(Yi—1 + Oi—1 — ©;) — v; cos(V;)
vi—1 8in(y;—1+0;_1—6;)—v; sin(y;)

S

O, =
(] l;
fi = 1 COS(’}-’@_) — E4i-+1,@'- COS(FE' — ®-g+1) — ksv;
Ui = m; i
N = —3(1 —sign(v;))(1 —sign(f))f:

vie {0,....n} Slide 057
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- realization of prescribed link lengths in time in dynamics?
- actuator force control to track masspoint distances
- due to supposed uncertainty of parameters: adaptive A -tracking controller

- given:

",U-ref(t) — [(f} = (h(f}f Zn.(t))T

m

- controller:

Ylle@®I =2 A+ 1< ]le(t)] t
iy = {4 U@l = NS A eIl <A +1

0 e < ANt —te < tg

—ok(t) e < ANt —te > 1y
k(to) = ko
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A=
>

s [m]

50r
401
30r ]
20r
10}
0 —Segment 0
—Segment 1
-10t Segment 2
—Segment 3
-20 . ‘ ‘ .
0 20 40 60
X [m]
segment paths
120
100+
80t
60+
40t
Segment 0
L Segment 1
20 Segment 2
Segment 3
00 1b 26 36 4|0 Sb 60 7b
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travel distance
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3 ;
"‘!\ f‘ i IP\ H |
25 | |‘| AV
2 M \ f ‘ | | i il f il f
| T \ WYL
w15
E i ‘
> 1} \ ‘ |‘ I | i ‘| |
AR
| | | | ‘ ‘ (Il | Il
o5 ({11 ! i —Segment 0
\ —Segment 1
ol L_ |_,, L I_,, L, L1 Segment 2
—Segment 3
0% 20 40 60 80
t[s]
segment velocities
60
S0r “‘u‘. —Segment 0
|——Segment 1
40} -~ Segment 2
— —Segment 3
=30/ \
—
20
10-
0 f . . I.
0 20 40 60 80
t [s]

skid angles
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- development of SLRS with passive joints, peristalsis, skids and spikes:

* active joints substituted by passive ones, change of shape via controlled,
time-dependent link lengths (peristalsis)

« ground contact via spiked skids

- description of a multi-segmented model:
« masspoint model (kinematics) with constant link length
« masspoint model (kinematics) with time-dependent link length

« masspoint model (dynamics and adaptive control) with time-dependent
link lengths

- developement of skid control mechanisms, introducing a simple gait-function
and an adaptive actuator force controller

- validation via simulations of several test paths
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- parameter studies: increase number of mass points, analyse corresponding gaits,
identificatrion of optimal gaits

- switching of gaits (gear shift) in dependence of actuator loads, spike loads ...

- switching of skid control mechanisms to navigate in uncertain terrain:

100

80r

60}

obstacle

avoidance 20t

backwards \(

=20 +

£ 40}
>

obstacle avoidance

1_—" forwards

directional stable

Segment 0
Segment 1
Segment 2
Segment 3

control

100

X [m]

150

Application: traveling through a labyrinth with switching skid control mechanisms
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Thanks!

Take care!

Stay healthy!
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