
SoftNet 2024 Congress

Theme:
Software-Now – Developing, Simulation,

and Validation Challenges

Panel #2 VENICE
FALL 2024

1

Moderator

Prof. Dr. Hans-Werner Sehring, NORDAKADEMIE gAG, Germany

Panelists

Prof. Dr. Simona Vasilache, University of Tsukuba, Japan

Prof. Dr. Radek Kočí, Brno University of Technology, Czech Republic

Prof. Dr. Luigi Lavazza, Universita` degli Studi dell'Insubria, Italy

Prof. Dr. Carlo Simon, Hochschule Worms, Deutschland

Jos van Rooijen, Huis voor Software Kwaliteit, Nederland

Dr. Hayk Aslanyan, CAST, RAU, Armenia

Panel #2 VENICE
FALL 2024

2

Panel Moderator VENICE
FALL 2024

Before we hear the panelists’ positions, let me give you some background on myself,

… and my opinion on the topic.

 Me
 Professor for Software Engineering at NORDAKADEMIE “Hochschule der Wirtschaft” (University of the economy)
 Scientific and practical background

 Research interest
 Model-driven Software Engineering
 Domain modeling
 Software specification
 Programming language specification

 For the topic of the panel

 In practice, software is tested as part of a quality assurance process.
 We all know that in fact we should proof correctness.
 Idea from formal program semantics: if proof is constructive, then it is a software generator.

Hans-Werner Sehring
NORDAKADEMIE

3

Panel Moderator’s Position VENICE
FALL 2024

Idealized MDSE Captures Three Domains: Subject Domain, Software Specification, and Code

Hans-Werner Sehring
NORDAKADEMIE

Domain Model(s) (Abstract) Software Model(s) Software

Abstract Model

More Concrete
Model

More Complete
Model

More Concrete More
Complete Model

Abstract Model

More Concrete
Model

More Complete
Model

More Concrete More
Complete Model

Code

4

Panel Moderator’s Position VENICE
FALL 2024

A perspective von Model-Driven Software Engineering:
When code generation is proofably correct, quality is granted?

Subject domain semantics
 Was the problem modeled correctly?
 Are all requirements specified? Are all constraints considered?
 Plus: with Generative AI there is a trend to go back to prosaic descriptions.

Software design
 Does the software specification address all requirements and constraints?
 Is it practical? With most projects being agile, there is direct feedback from implementations.

Code
 Are software generators working correctly? Including code catering for non-functional requirements?
 How about deployment, changing environments, evolution, etc.?

Therefore, even when software was built correctly through a correct generation process…
… there still can be domain modeling and software design flaws. How are these tested (in isolation)?

Hans-Werner Sehring
NORDAKADEMIE

5

Panelist Position VENICE
FALL 2024

6

Carlo Simon
Univ. Worms,

Germany

YOUR
PhotoProduct

 Traceable requirements

 Definition of Done

 Separate testing from development

 Product Backlog vs. Sprint Backlog

People

 Skilled labor shortage -> Career changer

 Stay up-to-date

 Use AI generated software

 “Low code”-worker

Domain

 Production, Logistics

 Maintainable vs. hard constraints

 Users as part of the team

 Development of AI applications (LLM prompts)

Software-Now - Developing, Simulation, and Validation Challenges

Panelist Position VENICE
FALL 2024

7

 Software-Now - Developing, Simulation, and Validation Challenges
 After so many years, the development process is still a problem

 Even with the available technology, setting up an efficient, effective and evolvable development
process is huge problem

 How to write requirements
 Requirements “culture”
 Impedance mismatch among business analysts, GUI designers, developers, testers

 How to structure the development organization
 By product vs by competence
 By contract vs by (reusable) components
 …

 What process model?
 Agile everybody?

 What tools
 Scouting
 Configuration / customization
 Lock-in

Luigi Lavazza
Univ. Insubria

YOUR
Photo

Panelist Position VENICE
FALL 2024

8

 Software-Now - Developing, Simulation, and Validation Challenges

 After so many years, the development process is still a problem
 How designers (mock-ups, prototypes) fit in the requirements definition process

 Clash with front-end developers

 Suboptimal technical choices

 Cost issues

 Organization Structure

 To effectively support projects

 The usual dilemma: BUs vs competence centers

 To support transition

 E.g., monolithic to microservice-based

Luigi Lavazza
Univ. Insubria

YOUR
Photo

Panelist Position VENICE
FALL 2024

9

 Software-Now - Developing, Simulation, and Validation Challenges

 After so many years, the development process is still a problem
 Tools

 What tools are available?

 How do they fit in the process?

 As-is

 To-be (hopefully, some improvement is envisioned)

 How much do they cost? (also in terms of learning curves)

 How easily can we switch to different tools, if needed?

Luigi Lavazza
Univ. Insubria

YOUR
Photo

Panelist Position

10

 Software (engineering) education: must keep up with *all*
developments
 Students’ interests
 Front-end / back-end development
 Machine learning, data engineering, AI etc.

Q: Software developer OR Software engineer ?

 Agile development – highly popular with students
 Attractiveness of startups (“The Lean Startup” – Eric Ries)

Simona Vasilache
University of

Tsukuba, Japan

VENICE
FALL 2024

Panelist Position

11

Testing: costly and complex phase in the software
development process

 Challenge: educating students (testers) with the right skillset
 Software testing concepts included in coursework OR

 Full dedicated courses

 Puzzling question in class:
“What is the difference between verification and validation?”

 Problems
 Testing and maintenance: least glamorous activities

 Students (and everyone else?!) perceive testing as dull, difficult, non-creative

Simona Vasilache
University of

Tsukuba, Japan

VENICE
FALL 2024

Panelist Position

12

Various approaches to software testing education
 Increasing motivation for learning about testing (teamwork?!)
 Software testing concepts in introductory programming courses
 Real projects that use industry-tested tools
 Gamification
 Fun and/or easy-to-implement games in the classroom

 “Test-driven development” (TDD)
 Strong opinions, both for and against!

• Future: using AI
• Why bother with learning about testing?! 

Simona Vasilache
University of

Tsukuba, Japan

VENICE
FALL 2024

Panelist Position VENICE
FALL 2024

13

 Consultant software testing / Quality Supervision

• Software testing is still really traditional
• Innovation and research is below par
• The (so called) innovation concentrates:

• How to apply test in a new development method
• Test tooling

• Hardly none testing techniques to beat future challenges we have to face,
like:

• Self driving cars
• Code development by hand of AI (how to prove the code)
• Dependencies of medical devices
• Smart devices connected to everything and everywhere
• Etc.

Jos van Rooijen
Huis voor Software Kwaliteit

YOUR
Photo

Panelist Position; The context VENICE
FALL 2024

14

Future of
software testingChances

Threads

Development of
Information
Technology

Development
inside quality
engineering

?Social
development

The context

Panelist Position VENICE
FALL 2024

15

Some challenges per perspective:
Developments Quality Engineering:
• Increasing dynamics. Development of information systems is never finished. So testing is also

never finished!
• Increasing complexity
• Bugs appears on different levels. Configuration, integration or parametrisation
Threads:
• Low chance, high impact
• Aging
• Complexity
• Self learing information systems; we don’t know any more how the information system

works
• Lack of cooperation between the industry and academia

Panelist Position VENICE
FALL 2024

16

What are the measures we have to take?

• What kind of techniques / approaches we have to develop?
• Is there something available?
• Traditional test approaches are not applicable anymore

Panelist Position VENICE
FALL 2024

 Does AI influence the way software develops?
 Code generation
 Test Generation
 What about requirements or design activities?

 Does AI influence developers?

 Will there be a need for as many (low-level) programmers?

 In general, can AI replace junior positions?

 If so, where will developers get experience for senior positions?

 Challenges

 It will be necessary to prepare (and teach software engineers) for changes in development processes

 Less emphasis on programming

 More emphasis on analysis and design

 Need to be able to interact appropriately with AI and be able to evaluate AI results

 Combination code generation and formal verification (or other methods) can reduce the need for programming while
maintaining confidence in the code

Radek Kočí,
Brno University of

Technology

17

Panelist Position VENICE
FALL 2024

18

 DEFECTS IN PROGRAMS

 On average, a developer creates 70 bugs per 1000 lines of code

 15 bugs per 1,000 lines of code find their way to the customers

 Fixing a bug takes 30 times longer than writing a line of code

 75% of a developer’s time is spent on debugging

 In the US alone, ~$113B is spent annually on identifying & fixing product
defects

 …….

Hayk Aslanyan
CAST, Armenia

YOUR
Photo

Panelist Position VENICE
FALL 2024

19

Hayk Aslanyan
CAST, Armenia

YOUR
Photo

https://www.cvedetails.com/

CVE cam be duplicated multiple times.

Examples:

• OpenSSL HeartBleed (leak of
encrypted information), CVE-2014-
0160

• Equifax Data Breach (147m. personal
data leak), known CVE-2017-5638 in
Apache Struts

Panelist Position VENICE
FALL 2024

20

Hayk Aslanyan
CAST, Armenia

YOUR
Photo

SECURITY MUST BE CONSIDERED IN ALL STAGES OF SOFTWARE DEVELOPMENT:
• REQUIREMENTS GATHERING STAGE. PREPARE AN APPLICATION RISK PROFILE. THE DOCUMENT DESCRIBES POSSIBLE ENTRY POINTS FOR

ATTACKERS AND CATEGORIZES SECURITY RISKS BY THE SEVERITY LEVEL, INCLUDING THEIR IMPACT AND LIKELIHOOD.
• SOFTWARE DESIGN STAGE. THREAT MODELING WHEN HIGH-LEVEL SOFTWARE ARCHITECTURE IS DESIGNED, AND POSSIBLE DATA FLOWS AND

DATA ENTRY POINTS ARE ESTABLISHED. IT INCLUDES:
• DECOMPOSING THE APPLICATION ARCHITECTURE INTO FUNCTIONAL COMPONENTS

• DETERMINING THREATS TO EACH OF THE COMPONENTS

• CATEGORIZATION AND PRIORITIZATION

• PLANNING COUNTERMEASURES FOR POSSIBLE ATTACKS

• SOFTWARE DEVELOPMENT STAGE.
• SECURE CODING PRACTICES

• STATIC ANALYSIS

• DYNAMIC ANALYSIS

• REGULAR PEER REVIEW

• SOFTWARE DEPLOYMENT AND SUPPORT STAGE.
• PENETRATION TESTING

• CREATING AN INCIDENT RESPONSE PROCEDURE

• SETTING APPLICATION SECURITY MONITORING (MANUAL AND AUTOMATED)
• SUBMITTING YOUR APPLICATION FOR EXTERNAL VALIDATION

• ESTABLISHING A FEEDBACK PROCESS AND TOOLS FOR USERS (TO REPORT VULNERABILITIES)

STAGE IS YOURS!

Theme:
Software-Now – Developing, Simulation,

and Validation Challenges

Panel #2 VENICE
FALL 2024

21

