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Before we hear the panelists’ positions, let me give you some background on myself,

… and my opinion on the topic.

 Me
 Professor for Software Engineering at NORDAKADEMIE “Hochschule der Wirtschaft” (University of the economy)
 Scientific and practical background

 Research interest
 Model-driven Software Engineering
 Domain modeling
 Software specification
 Programming language specification 

 For the topic of the panel

 In practice, software is tested as part of a quality assurance process.
 We all know that in fact we should proof correctness.
 Idea from formal program semantics: if proof is constructive, then it is a software generator.

Hans-Werner Sehring
NORDAKADEMIE
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Idealized MDSE Captures Three Domains: Subject Domain, Software Specification, and Code

Hans-Werner Sehring
NORDAKADEMIE
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A perspective von Model-Driven Software Engineering:
When code generation is proofably correct, quality is granted?

Subject domain semantics
 Was the problem modeled correctly?
 Are all requirements specified? Are all constraints considered?
 Plus: with Generative AI there is a trend to go back to prosaic descriptions.

Software design
 Does the software specification address all requirements and constraints?
 Is it practical? With most projects being agile, there is direct feedback from implementations.

Code
 Are software generators working correctly? Including code catering for non-functional requirements?
 How about deployment, changing environments, evolution, etc.?

Therefore, even when software was built correctly through a correct generation process…
… there still can be domain modeling and software design flaws. How are these tested (in isolation)?

Hans-Werner Sehring
NORDAKADEMIE
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Carlo Simon
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 Traceable requirements

 Definition of Done

 Separate testing from development

 Product Backlog vs. Sprint Backlog

People

 Skilled labor shortage -> Career changer

 Stay up-to-date

 Use AI generated software 

 “Low code”-worker

Domain

 Production, Logistics

 Maintainable vs. hard constraints

 Users as part of the team

 Development of AI applications (LLM prompts)

Software-Now - Developing, Simulation, and Validation Challenges
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 Software-Now - Developing, Simulation, and Validation Challenges
 After so many years, the development process is still a problem

 Even with the available technology, setting up an efficient, effective and evolvable development 
process is huge problem

 How to write requirements
 Requirements “culture”
 Impedance mismatch among business analysts, GUI designers, developers, testers

 How to structure the development organization
 By product vs by competence
 By contract vs by (reusable) components
 …

 What process model?
 Agile everybody?

 What tools 
 Scouting
 Configuration / customization
 Lock-in

Luigi Lavazza
Univ. Insubria
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 Software-Now - Developing, Simulation, and Validation Challenges

 After so many years, the development process is still a problem
 How designers (mock-ups, prototypes) fit in the requirements definition process

 Clash with front-end developers

 Suboptimal technical choices

 Cost issues

 Organization Structure

 To effectively support projects

 The usual dilemma: BUs vs competence centers

 To support transition

 E.g., monolithic to microservice-based

Luigi Lavazza
Univ. Insubria
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 Software-Now - Developing, Simulation, and Validation Challenges

 After so many years, the development process is still a problem
 Tools

 What tools are available?

 How do they fit in the process?

 As-is

 To-be (hopefully, some improvement is envisioned)

 How much do they cost? (also in terms of learning curves)

 How easily can we switch to different tools, if needed?

Luigi Lavazza
Univ. Insubria
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 Software (engineering) education: must keep up with *all* 
developments
 Students’ interests
 Front-end / back-end development
 Machine learning, data engineering, AI etc.

Q: Software developer OR  Software engineer ?

 Agile development – highly popular with students
 Attractiveness of startups (“The Lean Startup” – Eric Ries)

Simona Vasilache
University of 

Tsukuba, Japan

VENICE
FALL 2024
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Testing: costly and complex phase in the software 
development process

 Challenge: educating students (testers) with the right skillset 
 Software testing concepts included in coursework OR

 Full dedicated courses

 Puzzling question in class: 
“What is the difference between verification and validation?”

 Problems
 Testing and maintenance: least glamorous activities

 Students (and everyone else?!) perceive testing as dull, difficult, non-creative 

Simona Vasilache
University of 

Tsukuba, Japan

VENICE
FALL 2024
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Various approaches to software testing education
 Increasing motivation for learning about testing (teamwork?!)
 Software testing concepts in introductory programming courses
 Real projects that use industry-tested tools
 Gamification 
 Fun and/or easy-to-implement games in the classroom

 “Test-driven development” (TDD)
 Strong opinions, both for and against! 

• Future: using AI
• Why bother with learning about testing?! 

Simona Vasilache
University of 

Tsukuba, Japan

VENICE
FALL 2024
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 Consultant software testing / Quality Supervision

• Software testing is still really traditional
• Innovation and research is below par
• The (so called) innovation concentrates:

• How to apply test in a new development method
• Test tooling

• Hardly none testing techniques to beat future challenges we have to face, 
like:

• Self driving cars
• Code development by hand of AI (how to prove the code)
• Dependencies of medical devices
• Smart devices connected to everything and everywhere
• Etc.

Jos van Rooijen
Huis voor Software Kwaliteit
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Some challenges per perspective:
Developments Quality Engineering:
• Increasing dynamics. Development of information systems is never finished. So testing is also 

never finished!
• Increasing complexity
• Bugs appears on different levels. Configuration, integration or parametrisation
Threads:
• Low chance, high impact
• Aging
• Complexity
• Self learing information systems; we don’t know any more how the information system 

works
• Lack of cooperation between the industry and academia
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What are the measures we have to take?

• What kind of techniques / approaches we have to develop?
• Is there something available?
• Traditional test approaches are not applicable anymore
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 Does AI influence the way software develops?
 Code generation
 Test Generation
 What about requirements or design activities?

 Does AI influence developers?

 Will there be a need for as many (low-level) programmers?

 In general, can AI replace junior positions?

 If so, where will developers get experience for senior positions?

 Challenges

 It will be necessary to prepare (and teach software engineers) for changes in development processes

 Less emphasis on programming

 More emphasis on analysis and design

 Need to be able to interact appropriately with AI and be able to evaluate AI results

 Combination code generation and formal verification (or other methods) can reduce the need for programming while 
maintaining confidence in the code

Radek Kočí,
Brno University of 

Technology
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 DEFECTS IN PROGRAMS

 On average, a developer creates 70 bugs per 1000 lines of code

 15 bugs per 1,000 lines of code find their way to the customers

 Fixing a bug takes 30 times longer than writing a line of code

 75% of a developer’s time is spent on debugging

 In the US alone, ~$113B is spent annually on identifying & fixing product 
defects

 …….

Hayk Aslanyan
CAST, Armenia
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Hayk Aslanyan
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https://www.cvedetails.com/

CVE cam be duplicated multiple times.

Examples:

• OpenSSL HeartBleed (leak of 
encrypted information), CVE-2014-
0160

• Equifax Data Breach (147m. personal 
data leak), known CVE-2017-5638 in 
Apache Struts
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Hayk Aslanyan
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SECURITY MUST BE CONSIDERED IN ALL STAGES OF SOFTWARE DEVELOPMENT:
• REQUIREMENTS GATHERING STAGE. PREPARE AN APPLICATION RISK PROFILE. THE DOCUMENT DESCRIBES POSSIBLE ENTRY POINTS FOR

ATTACKERS AND CATEGORIZES SECURITY RISKS BY THE SEVERITY LEVEL, INCLUDING THEIR IMPACT AND LIKELIHOOD.
• SOFTWARE DESIGN STAGE. THREAT MODELING WHEN HIGH-LEVEL SOFTWARE ARCHITECTURE IS DESIGNED, AND POSSIBLE DATA FLOWS AND

DATA ENTRY POINTS ARE ESTABLISHED. IT INCLUDES: 
• DECOMPOSING THE APPLICATION ARCHITECTURE INTO FUNCTIONAL COMPONENTS

• DETERMINING THREATS TO EACH OF THE COMPONENTS

• CATEGORIZATION AND PRIORITIZATION

• PLANNING COUNTERMEASURES FOR POSSIBLE ATTACKS

• SOFTWARE DEVELOPMENT STAGE.
• SECURE CODING PRACTICES

• STATIC ANALYSIS

• DYNAMIC ANALYSIS

• REGULAR PEER REVIEW

• SOFTWARE DEPLOYMENT AND SUPPORT STAGE.
• PENETRATION TESTING

• CREATING AN INCIDENT RESPONSE PROCEDURE

• SETTING APPLICATION SECURITY MONITORING (MANUAL AND AUTOMATED)
• SUBMITTING YOUR APPLICATION FOR EXTERNAL VALIDATION

• ESTABLISHING A FEEDBACK PROCESS AND TOOLS FOR USERS (TO REPORT VULNERABILITIES)
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