3 FI% -
i g ;e T ety P
i 1 =
! et LS LAR IR 1 L . rr
I i | - g
; | = G .. . dln Model Based
o NS = >
:] Al S A
; PI—‘ ... ; ..ll- k ; o ode Generators for
"-‘ T ' 1 . " '_ - B
£ kY z . T
03 e | b pl P -
R #i *;'-_ B

Costs and Higher Reuse

Paper Presentation, 10/01/2024
19th Int. Conf. on Software Engineering Advances

ICSEA 2024, Venice ltaly
Hans-Werner Sehring NORDAKADEMIE N

HOCHSCHULE DER WIRTSCHAFT

Professor for Software Engineering

Head of the Business Informatics / IT Management (M.Sc.) degree program

Software Engineering
Model-Driven Software Engineering

Evolution-friendly software architecture

Software engineering education

Metamodellierung
Domain Modeling

Software Modeling

M3L

Content Management
Digital communication

Media-based knowledge representation

Personalization

Contact

hans-werner.sehring@nordakademie.de
https://www.nordakademie.de/die-hochschule/team/hans-
werner-sehring

http://dr.sehring.name
https://ercid.org/0009-0008-3016-6868
https://www.researchgate.net/profile/Hans-Werner-Sehring
https://scholar.google.de/citations?user=hsSrVL8AAAAJ

https://www.linkedin.com/in/hwsehring/

Agenda

03

MDSE

The context of model-driven software
engineering

Abstract Code Models

Models of code at different levels of
abstraction

Code Models in M3L

Some samples of abstract code models

02
04
06

Code Generation

Typical code generation approaches

The ML

The Minimalistic Meta Modeling Language

Conclusion

Summary and outlook

10/01/2024

Section O1

Model=Driven Software
Engineering (MDSE)

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Model=-Driven Software Engineering Approaches

Modeling often concentrates on the early development stages

Claim:

MDSE approaches typically concentrate on
Abstract Model Abstract Model
* subject domain models and

* high-level (abstract) solution descriptions.

More Concrete More Concrete) . .
Model Model The final step of code generation relies on

* apredefined solution strategy
(for example, for information systems) or

More Complete More Complete
Model Model

* aspecification formalism
(custom functionality)

More Concrete More More Concrete More
Complete Model Complete Model

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

(Software Engineering) Project Lifecycle

Actual (software engineering) projects span a larger lifecycle

Subject domain section

(Business)

Conceptualization i

Goals

Domain Constraints

Goal selection

Requirements

Component design Abstraction
GeneraIFi)nterfaces Domain
rocesses
Data flowsi Model <«
Solution

Product definition
Service design

Goal quantification
Solution hypothesis

Non-functional requirements

Architecture —
Communication paths

Component configuration
Product customization

Interface specifications
Services

Software

Concept

\ 4
» Systems

Architecture Runtime environments

: Resource demand
Language selection

Software design
Choice of libraries

¥» Architecture

Infrastructure
SLAs

Code

Runtime behavior

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024

» Operations <€—— Monitoing points

10/01/2024

6

Section 02

Code Generation

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Approaches to Code Generation

Claim: current approaches are either limited or costly

Typical approaches to bridge the (rather large) gap between specification and code

* Templates
* Meta programs
* Generative Al
Hyprid approaches, for example,
* Templates and meta programming
— Templates as a domain specific language for
— Meta programming for application-specific idioms
* Generative Al and meta programming

Software generators created by generative Al

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Section 03

Abstract Code
Models

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Break down the large step to code into smaller steps by means of model transformations

After finishing work on a model of the solution (architecture), transformation step into stage of coding
1) Choice of a basic implementation strategy (e.qg., programming language of a certain paradigm)

2) Creation of a model of implementation (code)
Make models of code evolve like models of other domains

3) Formulation of first hypothetical code (program in no particular programming language)

4) Stepwise optimization of the hypothetical program

5) Transformation into a model for the code in a concrete programming language

6) Application of idioms, patterns, best practices, ... of that programming language

7) Application of local style guides

8) Transformation into a model for the utillization of specific software libraries, using specific APIs, etc.

10
Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Interplay of Software Models

Models of the software solution evolve like application domain models do

Global Definitions

APM

Abstract Programming Model
A\

CPM

Concrete Programming Model -

Application-Specific Definitions

ADM

Application Design Model

a

AlIM

Application Implementation Model

Examples:

APM:
* Object-oriented programming or

* Domain-Driven Design

CPM:
e Javaor

* Java according to some style guide

ADM:
solution expressed in abstract notation

AlIM:
solution adopting best practices of some

technology
1

Domain Model

Example of Software Model Relationships

Programming Model

(from Project) (global)
Salarylncrease ConditionalStatement <€—
—> Raise
A HE B B
I
Application Design
—— CheckTargetSalary
Condition TrueCase FalseCase
GreaterThanComparison StateChange Error
—— Raise 0 + —» Salary

)

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024

10/01/2024

12

Section 04

The Minimalistic
Meta Modeling
Language (M°

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Eine Folie fiir alle Inhalte

The Minimalistic Meta Modeling Language has been reported on in other talks.
ldea:

* Modeling language with very lean syntax and semantics

* Applicable on all (four) levels from instance to meta-meta

* A framework for seamless modeling of all aspects of a problem solution

Only construct: concept definition (or reference)

SomeConcept is a BaseConcept { concept, base concept, refinement
Content is a ContextSpecificRefinement content in context

} |= ProductionRule semantic rule
| - PartialGrammarForSyntax . syntactic rule

Plus: inheritance (from base concepts), scopes, redefinitions (in context), pattern matching, evaluation

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

14

Section 05

Code Models in
ML

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Programming Paradigms = Imperative PLs

Type system (any paradigm)

Type

Boolean is a Type
True s a Boolean
False is a Boolean

Integer is a Type
0 Ls an Integer
Positivelnteger
ts an Integer {
Pred (s an Integer }
1 is a PositiveInteger {
0 is the Pred }

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024

Imperative Basics
Statement

Expression
Ls a Statement

Variable ¢
Name

Type }

Procedure {
FormalParameter
Ls a Variable
Statement }

Some Statements

ConditionalStatement
Ls a Statement
Condition is a Boolean
ThenStatement
Ls a Statement
ElseStatement
Ls a Statement }

Loop is a Statement {
Body is a Statement }

HeadControl ledLoop
Ls a Loop {

Condition is a Boolean }

16
10/01/2024

Example of Software Model Relationships in M°L

Domain Model Programming Model Domain Model Program Model
(from Project) (global) (from Project) (global)
Salarylncrease ConditionalStatement €—
— Raise Salarylncrease ConditiionalStatement
| I B
Raise

)

[L I
Application Design
CheckTargetSalary T T

— G

Condition TrueCase FalseCase Abstract program
P —— m—— Eror CheckTargetSalary is the SalaryIncrease from SomeSubjectDomainModel
l l l a ConditionalStatement from ImperativeProgramming {
GreaterThanIntegerComparison from Programming {

I R i - .
aise 0 ¥ | Saey Raise is the Valuel

T | I 0 1s the Value2 } is the Condition
StateChangeStatement from OOProgramming {
Salary is the Property

IntegerSum {
Salary is the Summandl
Increase is the Summand2
} is the Expression
} is the ThenStatement
ReturnStatement from Programming is the ElseStatement

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 J

Code Model Refinements

ADM refinements in order to optimize a program on the abstract level.

Example: company organization

Unit {
Departments is a Department
}

Department {
Teams (s a Team

)

Team {
TeamMembers is an Employee
}

Employee is a Person

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024

OrgUnits is a CompositePattern ({

OrgUnit LS

Team LS
Unit LS
Department (s

}

the CommonType
the LeafClass

d
d

BranchClass
BranchClass

10/01/2024

18

Concrete Code Models

ADM to AIM transformations to accomodate for a specific target language (or other technology)

Model-to-Text Transformations are defined in the CPM - in our case, M3L again

For example, generic OO to Java: Java {
PersonClass is a ConcreteClass { Person is a Class {
AgeOfMajority is an Integer Aqegfr§10rtty &Sd??,L“t {
. .. static is a Modifier
18 is the AgeOfMajority public is a Modifier)
) 18 Ls the AgeOfMajority
Person is a PersonClass { Name is a String ..)
Name is a String PeterHandle is a Variable {
) peter is the Name String is the Type
ConstructorCall {
Peter is a Person { Person is the Class
"Peter Smith" is the Name "Peter Smith" is a Parameter

} } s the InitialValue } }

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Section 06

Conclusion

Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Summary

Code generation as the final step of Model-Driven Software Engineering processes is typically expressed as a
model-to-text transformation.

This transformation has to bridge a large gap from an abstract description of the desired software solution to
working code.

Furthermore, code to meet nonfunctional requirements and project constraints is added in this step.
As a result, the development of code generators is a demanding and expensive task.

By introducing models of the domain code, model-to-model transformations can be applied longer down the
sequence of development steps. As a result, code generation becomes

* more feasible,
* less costly, and

* allows more reuse (on the level of models).

21
Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

Outiook on Future Work

Currently work carried out on the basis of small code samples -~ experiments with large scale applications

Contemporary programming languages are of a multi-paradigm nature - study degrees to which each
paradigm is followed varies, as well as the interplay of language constructs of different paradigms

Models of code may carry semantics - of abstract programs as well as of concrete code - translation of
domain semantics into program semantics needs investigation

22
Building Model-Based Code Generators - Hans-Werner Sehring - ICSEA 2024 10/01/2024

NORDAKADEMIE N

HOCHSCHULE DER WIRTSCHAFT

NORDAKADEMIE gAG Hochschule der Wirtschaft
Kollner Chaussee 11 - 25337 EImshorn - Tel.: +49 (0) 4121 4090-0 - E-Mail: info@nordakademie.de - Web: www.nordakademie.de

	Folie 1
	Hans-Werner Sehring (2)
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

