ELANENET: USING LANE PARAMETERS FOR BETTER DETECTION OF LANES IN AUTONOMOUS DRIVING SYSTEMS

12/12/2023

Elikem Buertey, Kshirasagar Naik, Nitin Naik, Sriram Sivaraman

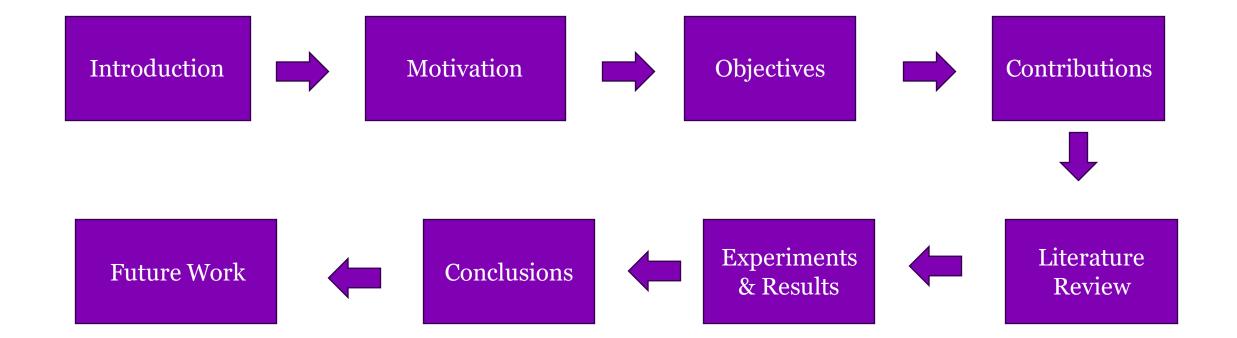
Presenter: Elikem Buertey

Affiliation: University of Waterloo Contact email: <u>ebuertey@uwaterloo.ca</u>

ELIKEM BUERTEY

- Elikem Buertey received his bachelor's degree in Electrical and Electronic Engineering from the University of Mines and Technology, Ghana in 2019. He is currently a masters student specializing in AI and pattern matching at the University of Waterloo, Ontario, Canada.
- His research interest lies in the intersection of artificial intelligence (particularly, computer vision), and autonomous vehicles.

OUTLINE



FACULTY OF ENGINEERING

INTRODUCTION: MOTIVATION

- According to the World Health Organization, approximately 1.3 million people lose their lives due to road traffic crashes, and between 20 and 50 million more suffer non-fatal injuries, with many enduring disabilities[1].
- 94% of these accidents are caused by human error, highlighting the potential for significant reduction if human error could be minimized [2].
- The anticipated benefits of autonomous vehicles include crash prevention, reduced travel times, improved fuel efficiency, and parking benefits, with estimated savings of up to \$2000 per year per autonomous vehicle and potentially reaching nearly \$4000 when considering comprehensive crash costs [3].

INTRODUCTION: AUTONOMOUS VEHICLE SYSTEM MODEL

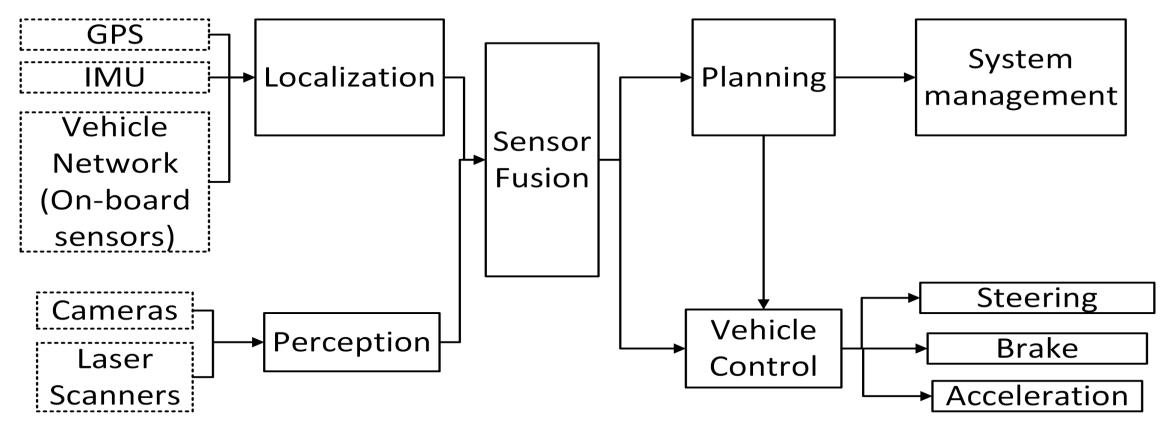


Figure 1: Autonomous Vehicle System Model

INTRODUCTION: CONTRIBUTIONS

- We propose ELaneNet as a new approach to address lane detection challenges.
- We introduce capacity, lost capacity and unsafe driving measure as performance metrics since they are more specific to lane detection than general metrics such as recall.
- We propose that a lane abstracting method instead of the conventional line abstracting method should be used to assess the performance of lane detection algorithms.

INTRODUCTION: OBJECTIVES

- Implement and Understand the LaneNet Model
- Improve on LaneNet's Detection Capabilities
- Evaluate the performance of LaneNet and ELaneNet
- Visualize and Analyze the Lane Detection Results
- Introduce new lane detection evaluation metrics

LITERATURE REVIEW: LANE DETECTION METHODS

- Traditional Methods
- Deep-Learning Methods

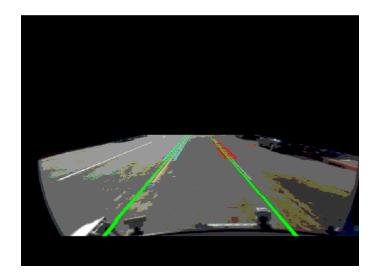
FACULTY OF

LITERATURE REVIEW: TRADITIONAL METHODS

- The lane detection procedure involves four main stages:
 - $_{\odot}$ Image preprocessing
 - \circ Feature extraction
 - \circ Lane fitting
 - \circ Lane tracking

FACULTY OF

LITERATURE REVIEW: IMAGE PREPROCESSING

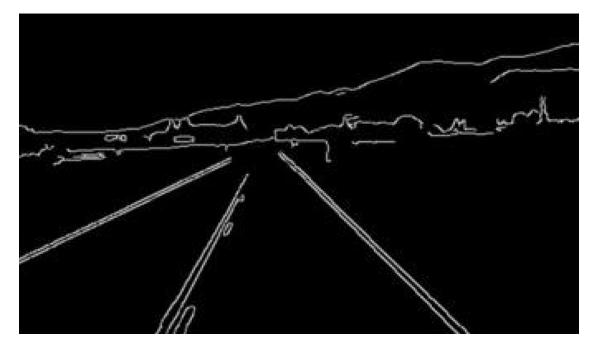


GRAY SCALE CONVERSION **BLURRING OF IMAGE ROI SELECTION**

Figure 2: Sample image preprocessing techniques

LITERATURE REVIEW: FEATURE EXTRACTION

INPUT IMAGE



EDGE DETECTION

Figure 3: Feature extraction using Edge detection

FACULTY OF

LITERATURE REVIEW: LANE TRACKING

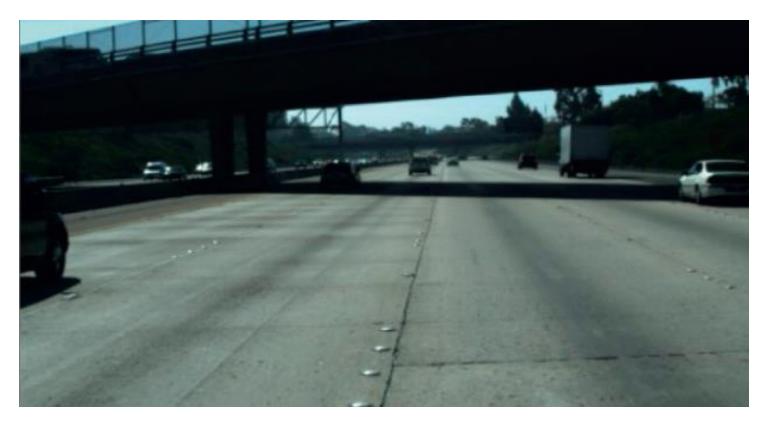


Figure 4: Advantage of lane tracking in poor lighting

FACULTY OF

LITERATURE REVIEW: DEEP-LEARNING METHODS

- Encoder-decoder CNN
- FCN with optimization algorithms
- CNN+RNN
- GAN model

FACULTY OF

LITERATURE REVIEW: ENCODER DECODER CNN

Convolutional encoder-decoder

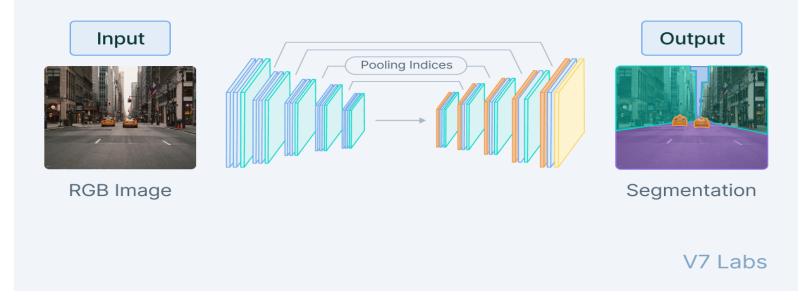


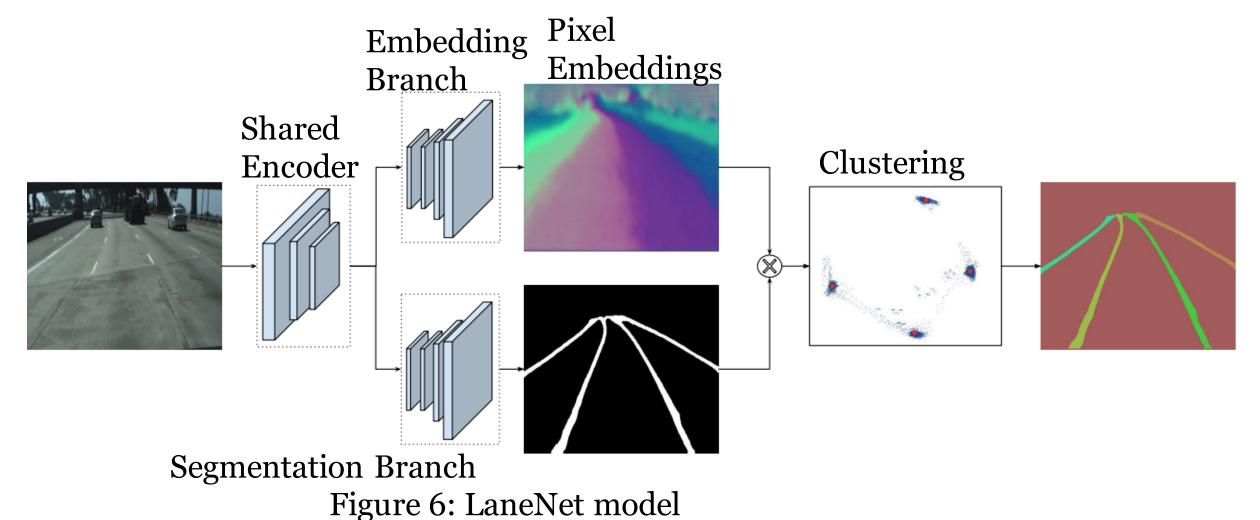
Figure 5: Convolutional encoder-decoder

FACULTY OF

LITERATURE REVIEW: DATASETS

- TuSimple
- BDD100K
- CULane
- Unsupervised LLAMAS

FACULTY OF



PRESENTATION TITLE

UNIVERSITY OF

FACULTY OF

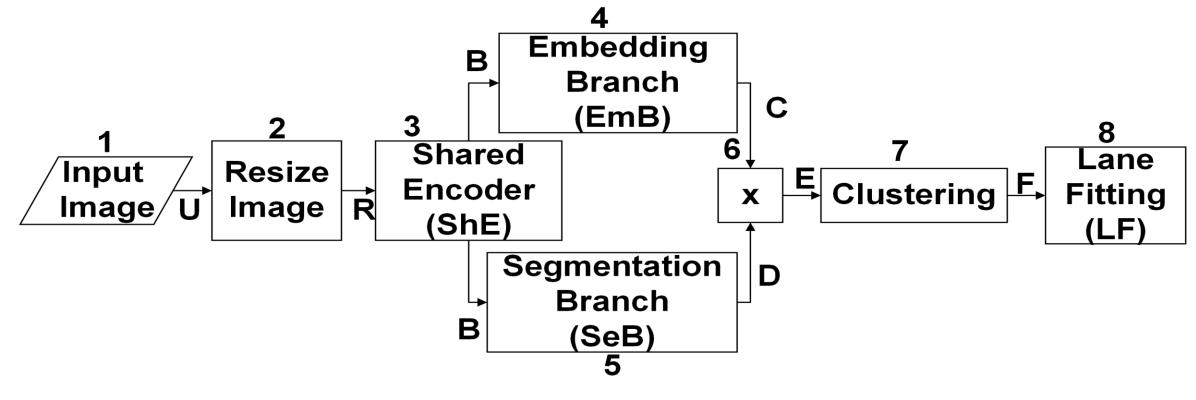


Figure 7: LaneNet model

- $U = Input Image (\alpha m \times \beta n \times c)$
- R = Resized image (m × n × c)
- B = Encoded image (m × n × c)
- C = Pixel embeddings (m × n × N)
- **D** = Binary lane segmentation (m × n)
- E = Lane embeddings (m × n × N)
- F = Lane instance embeddings (p × 2) W = Splines (q × 1) Where α m, β n, m, n, N, p, q, c $\in \mathbb{N}$

METHODOLOGY: INPUT IMAGE

• Input Image: In the image processing pipeline, input images are resized from their original resolution of $\alpha m \times \beta n \times c$ pixels to a reduced resolution of $m \times n \times c$ where $\alpha m, \beta n, m, n, c \in \mathbb{N}.$

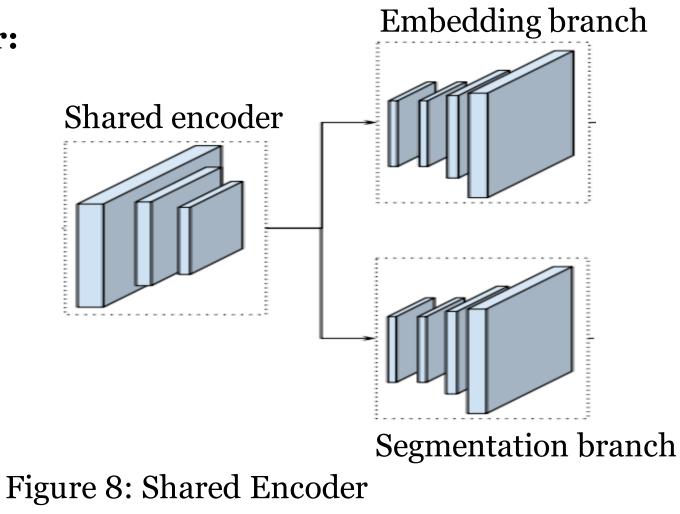
FACULTY OF

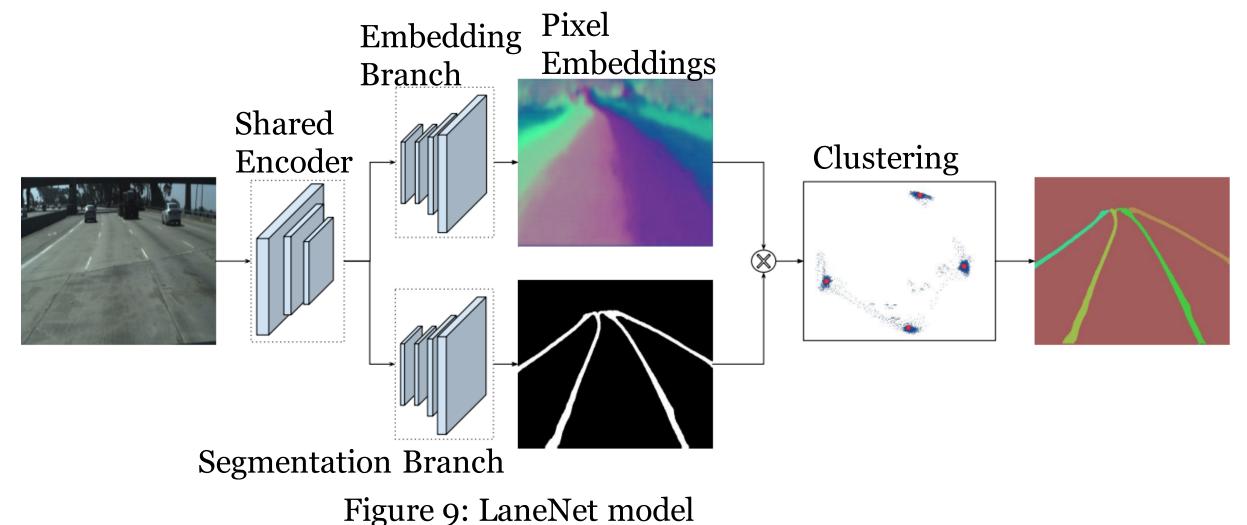
METHODOLOGY: SHARED ENCODER

- **Shared Encoder:** Two modifications to ENet's architecture was introduced in LaneNet's shared encoder.
- Firstly, the output of ENet was adapted to create a two-branched network, accommodating both binary segmentation and instance segmentation.
- Secondly, in LaneNet, only the first two stages (stages 1 and 2) of ENet's encoder are shared between the two branches, while the full ENet decoder (stages 4 and 5) serves as the backbone for each separate branch. This means that stage 3 of ENet's encoder is not used in LaneNet.

METHODOLOGY: SHARED ENCODER

Shared Encoder:





FACULTY OF

METHODOLOGY: EMBEDDING VISUALISATION

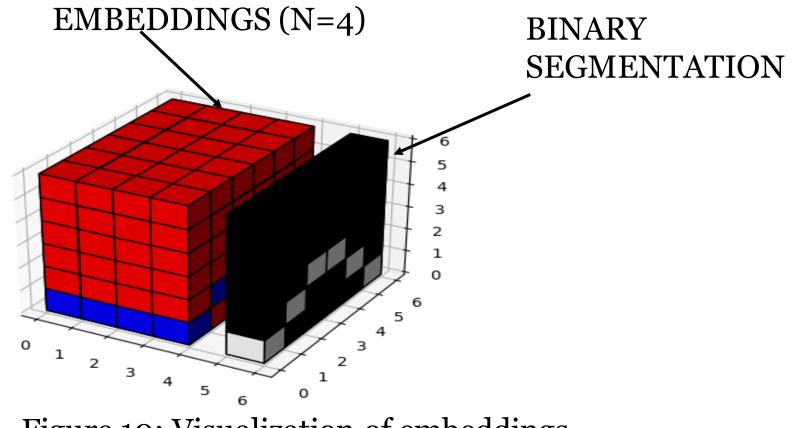


Figure 10: Visualization of embeddings

FACULTY OF

METHODOLOGY: SEGMENTATION BRANCH

• Segmentation Branch: Segmentation branch of the network is designed to produce a binary segmentation map which classifies the pixels into either lane or background categories. The class weighted cross entropy loss[4] is used to account for imbalance between the lane pixels and the background pixels. As stated earlier, the output of the segmentation branch is a binary segmentation map which classifies pixels into either lane or background. Since the background pixels far exceed the lane pixels, there is an imbalance between the lane pixels and the background pixels. To address this, the class weighted cross entropy loss[4] is used to account for the imbalance between the lane pixels and the background pixels.

METHODOLOGY: PRODUCT AND CLUSTERING

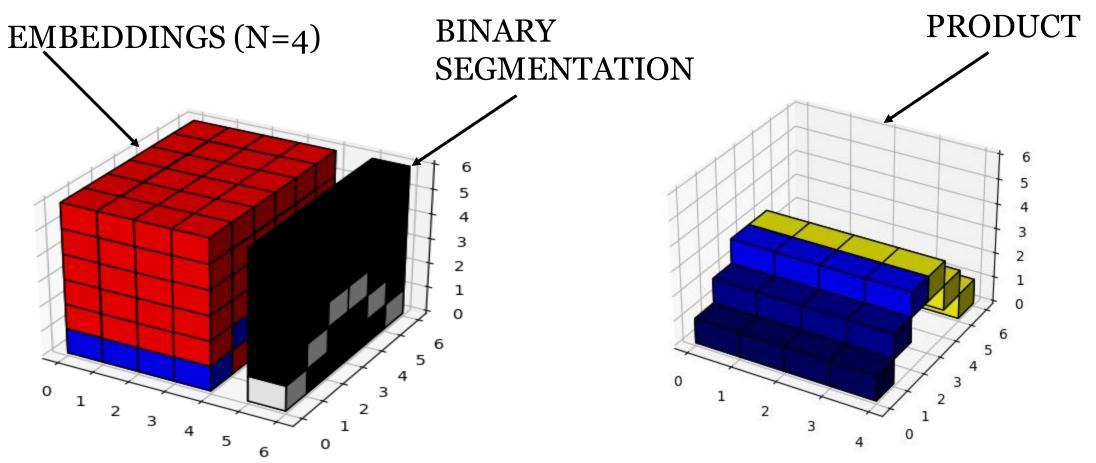


Figure 11: Visualization of lane embeddings

FACULTY OF

METHODOLOGY: EMBEDDING BRANCH

• Embedding Branch: Embeddings produced by the embedding branch have the characteristic that lane pixels belonging to the same lane have similar embeddings while lane pixels belonging to different lanes have different embeddings.

$$egin{aligned} L_v \, = \, rac{1}{K} \sum_{k=1}^K rac{1}{N_k} \sum_{i=1}^N \left[|| \, \left. \mu_k - x_i || - \delta_v
ight]_+^2 \ L_d \, = \, rac{1}{K(K-1)} \sum_{k_A=1}^K \sum_{k_B=1}^K \sum_{k_B=1}^K || \sigma_d \, - \left| \left| \mu_{\,\,kA} \, - \mu_{kB}
ight| || \end{aligned}$$

METHODOLOGY: EMBEDDING BRANCH

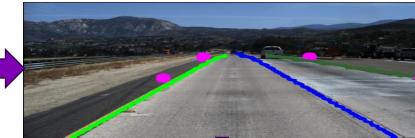
 δ_d is the minimum distance allowed between cluster centers. δ_n is the maximum distance allowed between an embedding and the mean embedding of its corresponding cluster. K denote the number of clusters (lanes) N_k the number of elements in cluster k where $1 \le k \le K$ x_i is the i^{th} pixel embedding in cluster k μ_k denotes the embedding of cluster k $[x]_+$ = max (0, x) the hinge The total loss L is equal to $L_{\nu} + L_d$

METHODOLOGY: LANE FITTING

(a) Input Image

(b) Selection of ROI in image

(c) Original image with predicted lanes



(g) Original image with fitted lanes

(e) Transformed image with lane fitted

Figure 12: Lane Fitting

(d) Image transformed to BEV

FACULTY OF ENGINEERING

METHODOLOGY: LANE FITTING

- Given N ground-truth lane points $p_i = [x_i, y_i, 1]^T \in P$
- Assume H is the transformation matrix, we transform the points using P' = HP
- Through these projected points we fit a polynomial $f(y) = \alpha y^{2} + \beta y' + \gamma$

$$\mathbf{w} = (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{x}'$$

with
$$\mathbf{w} = [\alpha, \beta, \gamma]^T$$
, $\mathbf{x}' = [x'_1, x'_2, ..., x'_N]^T$ and

$$\mathbf{Y} = \begin{bmatrix} y'_1^2 & y'_1 & 1\\ \vdots & \vdots & \vdots\\ y'_N^2 & y'_N & 1 \end{bmatrix}$$

-

METHODOLOGY: ENHANCED LANENET

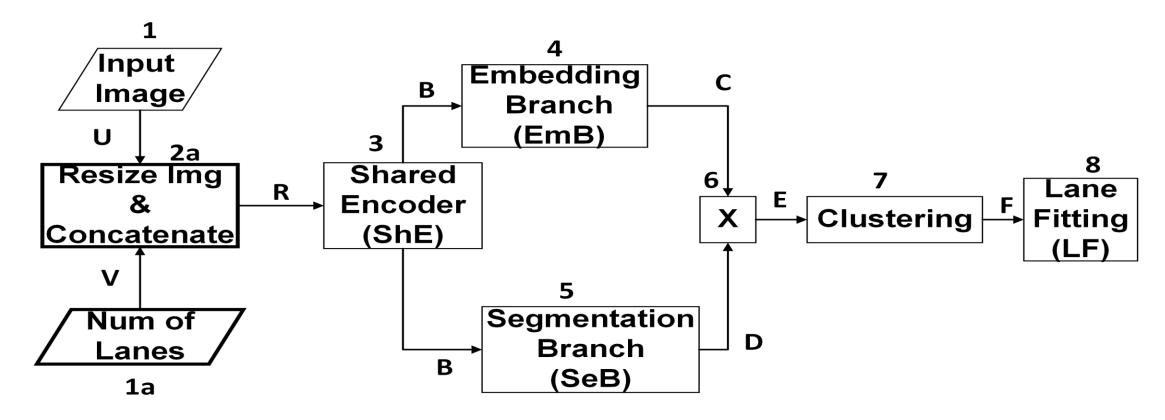


Figure 13: Enhanced LaneNet Network

FACULTY OF

METHODOLOGY: ENHANCED LANENET

- U = Input Image ($\alpha m \times \beta n \times c$)
- V = One-hot encoded number of lanes (1 × mc)
- B = Encoded image (m × n × c)
- C = Pixel embeddings (m × n × N)
- **D** = Binary lane segmentation (m × n)
- R = Resize Img & Concatenate (m × (n-1) × c)
- E = Lane embeddings (m × n × N)
- F = Lane instance embeddings (p × 2)
- $W = Splines (q \times 1)$
- Where αm , βn , m, n, N, V, p, q, $c \in \mathbb{N}$

FACULTY OF

METHODOLOGY: LANE ENCODING

INDEX	1	2	3	4	5	6
1	1	0	0	0	0	0
2	0	1	0	0	0	0
3	0	0	1	0	0	0
4	0	0	0	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

Table 1: Examples of One-Hot Encoding

METHODOLOGY: RESIZE IMAGE AND CONCATENATE

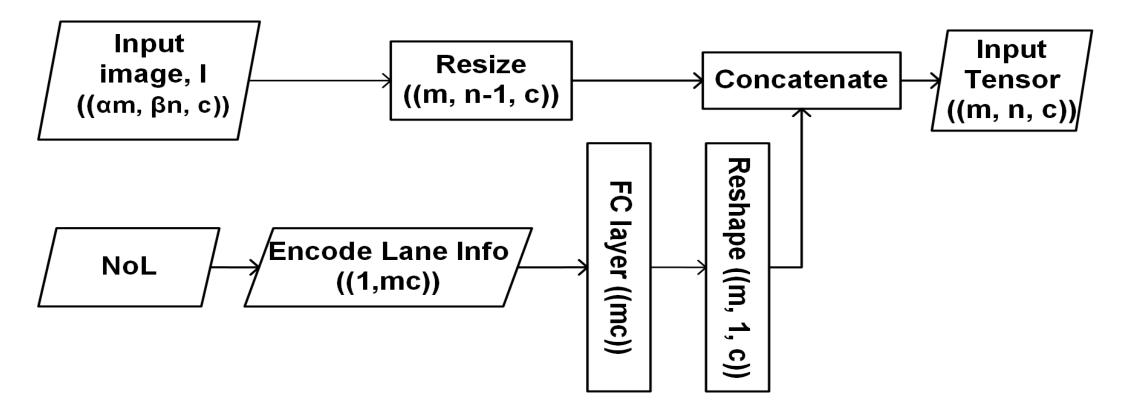
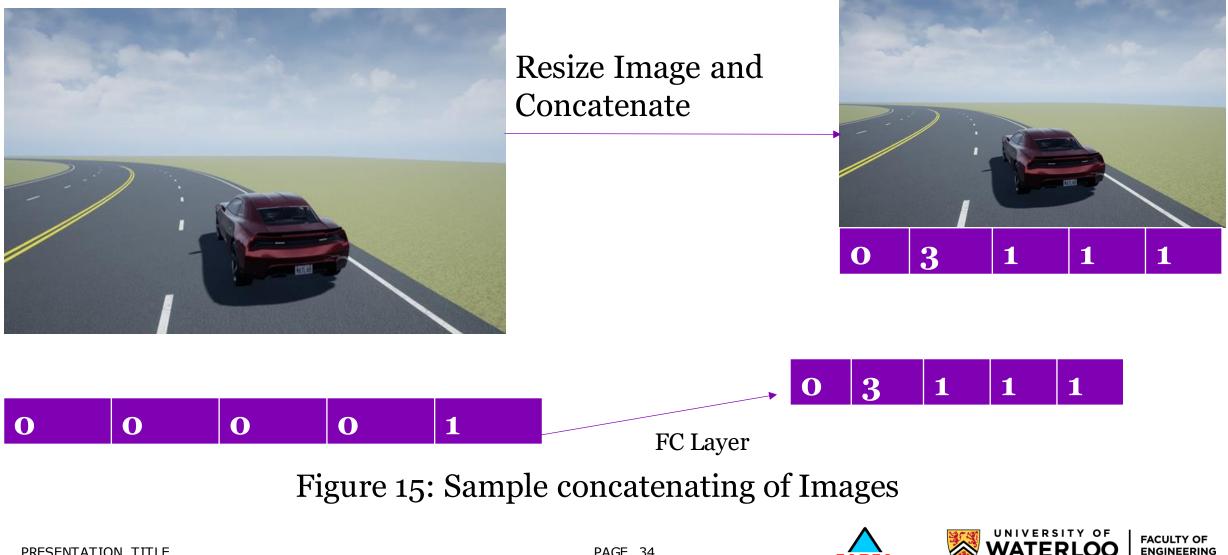


Figure 14: Concatenating image with lanes

METHODOLOGY: RESIZE IMAGE AND CONCATENATE



METHODOLOGY: FULLY CONNECTED LAYER

Previous layer Fully-connected layer

Figure 16: Fully connected layer

METHODOLOGY: CAPACITY

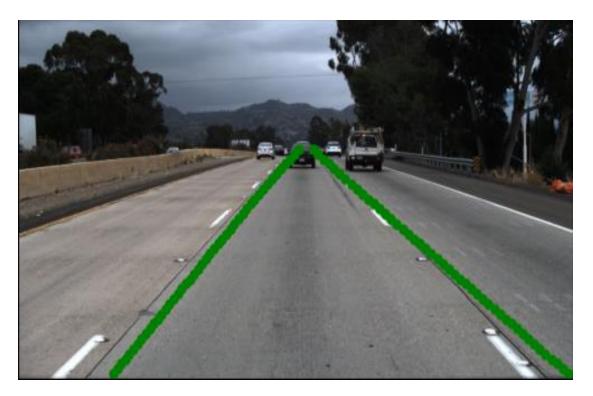


Figure 1: Autonomous system with lower capacity

Figure 2: Autonomous system with higher capacity

Figure 17: Capacity illustration

FACULTY OF

METHODOLOGY: CAPACITY

 $Capacity = \frac{Detected \ lane \ lines}{Num \ of \ ground \ truth \ lane \ lines}$

$$Capacity = rac{TP}{TP + FN}$$

Lost Capacity = 1 - Capacity

METHODOLOGY: UNSAFE DRIVING MEASURE

Figure 18: False positive lane detection causes unsafe driving

METHODOLOGY: UNSAFE DRIVING MEASURE

 $Unsafe \ Driving \ Measure = \frac{total \ number \ offalsely \ predicted \ lane \ lines}{total \ number \ of \ correctly \ predicted \ lane \ lines}$

$$Unsafe \ Driving \ Measure = \frac{F_{pred}}{N_{pred}}$$

METHODOLOGY: LANE ABSTRACTION APPROACH

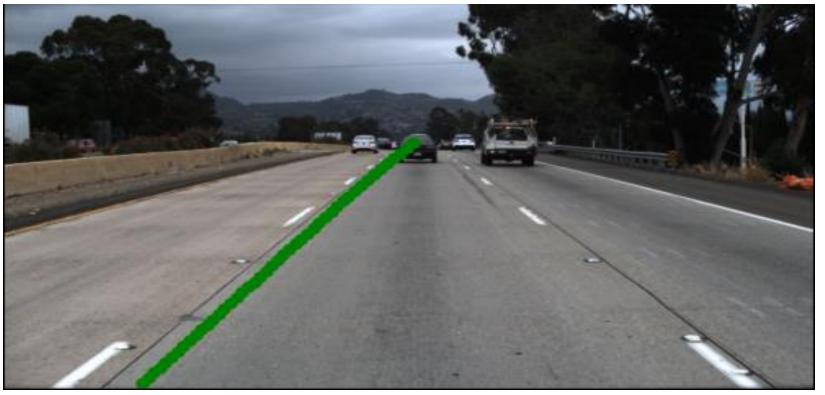


Figure 19: Driving scene illustrating the problem with the lane abstraction approach

METHODOLOGY: UPDATED EXPRESSIONS

$$Capacity^{L} = \frac{TP^{L}}{TP^{L} + FN^{L}}$$

$$Unsafe \ Driving \ Measure^L = rac{F_{pred}^L}{N_{pred}^L}$$

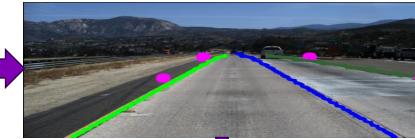
$$Lost \ Capacity^L \ = \ 1 \ - \ Capacity^L$$

METHODOLOGY: LANE FITTING

(a) Input Image

(b) Selection of ROI in image

(c) Original image with predicted lanes



(g) Original image with fitted lanes

(e) Transformed image with lane fitted

Figure 20: Lane Fitting

(d) Image transformed to BEV

EXPERIMENTS AND RESULTS: LANE ABSTRACTION

LANE ABSTRACTION					
NETWORK	USED CAPACITY	LOST CAPACITY	UNSAFE DRIV.		
ELaneNet	87.5 %	12.5 %	27.3 %		
LaneNet	80.4 %	19.6 %	38.5 %		

LINE ABSTRACTION					
NETWORK	USED CAPACITY	LOST CAPA CITY	UNSAFE DRIV.	ACCURACY	
ELaneNet	93.1 %	6.9 %	13.9 %	94.5 %	
LaneNet	88.9 %	11.1 %	23.0 %	92.3 %	

FACULTY OF

EXPERIMENTS AND RESULTS: SPEED METRICS

Metric	LaneNet	ELaneNet
Forward pass time per image (ms)	43.5	51.6
Clustering time per image (ms)	231.8	232.8
Total time per image (ms)	275.34	284.4

FACULTY OF

EXPERIMENTS AND RESULTS: VISUALISATION

(a) Ground truth

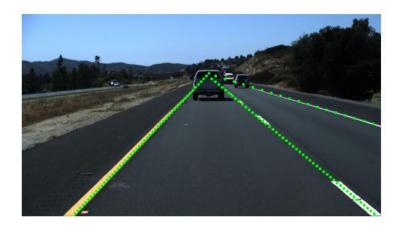
(b) LaneNet detects false positive

(c) ELaneNet does not detect false positive

Figure 16: Visualization of results

FACULTY OF

EXPERIMENTS AND RESULTS: VISUALISATION



a) Ground truth

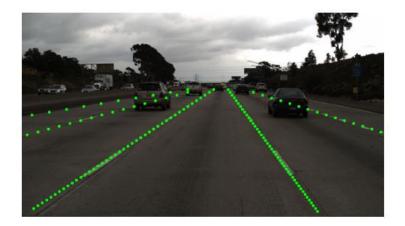
b) LaneNet detects false positive

c) ELaneNet does not detect false positive

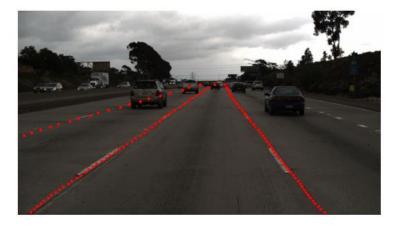
Figure 17: Visualization of results

FACULTY OF

EXPERIMENTS AND RESULTS: VISUALISATION



a) Ground truth



b) LaneNet misses a lane

c) ELaneNet identifies missed lane

Figure 18: Visualization of results

FACULTY OF ENGINEERING

FUTURE WORK

- We plan to further enhance eLaneNet by using the NoL to extrapolate missing lanes and eliminate false positives.
- Also, we plan on using other datasets to evaluate the effectiveness of eLaneNet.

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING

Our greatest impact happens together.

REFERENCES

- National Highway Traffic Safety Administration, "Traffic safety facts 2015 data: Pedestrians," <u>https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/81211</u>
 J. U.S. Department of Transportation, Tech. Rep., 2015
- World Health Organization. Road traffic injuries. https://www.who.int/newsroom/fact-sheets/detail/road-traffic-injuries, 2021
- Daniel J. Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77:167–181, 2015.

REFERENCES

 A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural network architecture for real-time semantic segmentation," CoRR, vol. abs/1606.02147, 06 2016.

FACULTY OF