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Context
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Motivation

Training Data

» Multi-Label Classification
9 labels to predict!
» Data Limitation
350 instances,
-> small number of samples
» Sample Length
160 char mean length
-> short text length
Quality
» Required
High-quality prediction
Accuracy > 0.95
>

Provided by Support Vector Machine

-> Accuracy of 0.65!
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Approach

Aim
» Increase the information gain to
increase text classification quality.

Approach

Text is language encoded information.

Increase information gain by linguistic enhancement.

» Use the linguistic skill of LLMSs.

» Use linguistic context information in
preprocessing.
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Information Gain by
Large Language Models

Preprocessing: LLM-Based Data Augmentation
» Use LLMs to modify text to increase sample count.

» Publicly available tool by DeepL SE.

Classifier: LLM-Based Classifiers
» Employ LLMs as foundational model.
» LLMs gain information from initial training data.

» Fine-tuning on use case data for specific classification
task.
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Information Gain by
Linguistic enhanced Preprocessing

Text Preprocessing

[be, st, app, [135, 998,
[TheSbest, [best, apples, il 2t 106 29
apples, are, re sreei] es, are, roe ’
sweet] ‘ sw, eet] 258]
Feature Filtered T
Words . Tokens ' IDs
Selection Words Tokenization Embedding
[the, app,
[The, applets], les, are, [99, 106,
training SESa SHES sw, eet] 29, 258]
data Text-Data
student
answer The best apples are sweet
. .. , Superlative Present . .
L|ngu|st.|c Determiner B - Plural noun tense verb Adjective
Information

Automatic Assessment of Student Answers using Large Language Models: Decoding Didactic Concepts 7

Classifier

ML
lassifier




Linguistic Enhanced
Feature Selection

Objective

» Enhance information density by removing frequent words.
Standard Approach

» Remove stop words.

» Example: ‘and’.

Linguistic Enhancement

» Weighted Unimportant Feature Selection WUP.

» Remove word types that are less important for the classifier model.

» Example: superlative adjectives (e.g., highest, brightest).
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Word embedding

Linguistic Enhanced
Tokenization

WordPiece Tokenization

» State-of-the-Art Tokenization

» ‘Cut the text into very short pieces’

LinPair Approach

» Integrates linguistic information into data corpus

» ‘Cut the text into very short pieces but keep
linguistic information’

» SmartLinPair Tokenization

» Inject word-type tags into the dataset only when WordPiece
tokenization fails.

» CompleteLinPair Tokenization

» Handle word-type tags for all subtokens.
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Tokenization

bugs annoi

[HbH, H##u, "##gS", ]

bugs annoi

["b", "##u, "##gs", verb]

bugs annoi
["b_noun", "##u_noun",
"##gs_noun", verb]
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Evaluation

» Data Augmentation

ML-Text-Classification-Setup

» WUP enhanced feature selection
Feature Part-of-Speech

» Tokenization Selection | Enrichment
» Support Vector Machine

Pre-Processing

» Linguistic enhanced TFIDF -
- ¢ Efficiency
» DistiiBERT (Large Language Model) -
» WordPiece Tokenizer
» SmartLinPair ¢
» CompleteLinPair Classifier Legend
» Dataset ¢
» Labeled Student Answers - Class __Process |
uali o
. Quality Prediction ] [ Result )
» Metrics | Contribution |
» Quality
» Efficiency
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Results LLM Data Auqmentatlon

1.0 4 Augmented Dataset |
1) Ve ‘ Augmented Dataset
» All Classifiers showed <4 (2)
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quality by Data 0.9 v vV 4 .Y A
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Results SVM Classifier
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Results DestIIBERT Classifier
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Best Data Augmented Data————S-=—

The fine-tuned LLM achieved best
results by using LinPair
tokenization.

] ] Best Standard Method
Comparison by F1 micro score
Standard Method (0.67)
Data Augmented Data (0.89)
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Results LinPair Tokenization
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Eﬁ:eCtS Of LI n g u IStI C Relative gain using linguistic techniques compared to standard procedure

18%

Enhancement D@ {

14%
12%
10%

Classifier
» LLM DistilBERT (1) improved by 17%,

» Support Vector Machine (2) decreased. 29,

Tokenisation 6%
4%
» SmartLinPair (3) and CompleteLinPair (4) o
leads to increase of classification quality. (2) 00/0
Feature Selection 2%
o F SF S P & ST S
» WUP (Ux, Uy, and Us) had a negative impact. e o Qﬁ&/ & {@ @ » q%f’ q@’b @ Q@
> >
Linguistically enhanced preprocessing yields & ,q@ ,q@ §° s §°&. g@ ch\‘*' $° q&&
improvements in text classification performance. ® cf“ c‘f“ %@* & & & P
Using a finetuned LLM and CompleteLinPair the & &E P (35 (3‘5
increase is 7.5% F1-Micro Score NN X P

and 16% Hamming Score.

® F1-Micro Delta F1-Macro Delta Hamming-Score Delta

Automatic Assessment of Student Answers using Large Language Models: Decoding Didactic Concepts ]_6



Thank you.

»Daniel Schonle

»schoenledanielhfu@gmail.com
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