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Research Topics

 Blockchain, Cyber-physical Systems

 Machine Learning in e-Learning Environments

 Natural Language Processing, Feature Selection

 ML-Efficiency

Publications

 Linguistic Driven Feature Selection for Text Classification as Stop Word 
Replacement, (2023)

 Data-Driven Tutoring: challenges and prospects, (2021)

 Industry use cases on blockchain technology, (2021)

 Digital twin as a service (2021)
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Teaching Simulation

 Teacher asks simulated students

 Assessment of student answer

 Open text interactions

Context
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Assist the Teacher by ML

 Automatic assessment of student 
answers 

 Text classification

 Attain high-quality



Motivation

Training Data

 Multi-Label Classification
9 labels to predict!

 Data Limitation
350 instances,
-> small number of samples

 Sample Length
160 char mean length 
-> short text length

Quality

 Required
High-quality prediction 
Accuracy > 0.95
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Support Vector 

Machine
0.65

Quality

Accuracy Score

 Provided by Support Vector Machine

-> Accuracy of 0.65!



Approach

Aim

 Increase the information gain to 
increase text classification quality.
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Approach

Text is language encoded information.

Increase information gain by linguistic enhancement.

 Use the linguistic skill of LLMs.

 Use linguistic context information in 
preprocessing.

The best apples are sweet

Determiner
Superlative 

adjective
Plural noun

Present 

tense verb
Adjective



Information Gain by 

Large Language Models 

Preprocessing: LLM-Based Data Augmentation

 Use LLMs to modify text to increase sample count.

 Publicly available tool by DeepL SE.

Classifier: LLM-Based Classifiers

 Employ LLMs as foundational model.

 LLMs gain information from initial training data.

 Fine-tuning on use case data for specific classification 

task.
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Information Gain by 

Linguistic enhanced Preprocessing
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Linguistic 

Information

Words

Text-Data

Classifier

IDsTokenization

Text Preprocessing

Feature 

Selection

Filtered 

Words
Tokens Embedding

[The, best, 

apples, are, 

sweet]

[best, apples,  

are,  sweet]

[The, apples,  

are,  sweet]

[be, st, app, 

les,  are,  

sw, eet]

[135, 998, 

106, …  29,  

258]

[the, app, 

les,  are,  

sw, eet]

[99, 106, …  

29,  258]

The best apples are sweet

Determiner
Superlative 

adjective
Plural noun

Present 

tense verb
Adjective



Linguistic Enhanced 

Feature Selection

Objective

 Enhance information density by removing frequent words.

Standard Approach

 Remove stop words.

 Example: ‘and’.

Linguistic Enhancement

 Weighted Unimportant Feature Selection WUP.

 Remove word types that are less important for the classifier model.

 Example: superlative adjectives (e.g., highest, brightest).
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Feature 

Selection



Linguistic Enhanced 

Tokenization

WordPiece Tokenization

 State-of-the-Art Tokenization

 ‘Cut the text into very short pieces’  

LinPair Approach

 Integrates linguistic information into data corpus

 ‘Cut the text into very short pieces but keep 
linguistic information’

 SmartLinPair Tokenization

 Inject word-type tags into the dataset only when WordPiece 
tokenization fails.

 CompleteLinPair Tokenization

 Handle word-type tags for all subtokens.
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Tokenization

bugs annoi

["b", "##u, "##gs", UNKOWN]

bugs annoi

["b", "##u, "##gs", verb]

bugs annoi

["b_noun", "##u_noun", 

"##gs_noun", verb]



Evaluation
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 Data Augmentation

 WUP enhanced feature selection

 Tokenization

 Support Vector Machine

 Linguistic enhanced TFIDF

 DistilBERT (Large Language Model)

 WordPiece

 SmartLinPair

 CompleteLinPair

 Dataset

 Labeled Student Answers

 Metrics

 Quality

 Efficiency



Results LLM Data Augmentation
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Initial Dataset

Augmented Dataset

Initial Dataset

Augmented Dataset

 All Classifiers showed 

increased text qualification 

quality by Data 

Augmentation

 SVM 0.96% (1)

 DestilBERT 0.95% (2)

(2)(1)



Results SVM Classifier
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Text + Linguistic Data Text

 Overall High Quality by 

Support Vector Machine

 No positive effects by 

including linguistic 

information
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Results DestilBERT Classifier
Best Linguistic Enhanced Method

Best Standard Method

Best Data Augmented Data

 The fine-tuned LLM achieved best 

results by using LinPair 

tokenization.

 Comparison by F1 micro score

 Standard Method (0.67)

 Data Augmented Data (0.89)

 Linguistic Enhanced Method (0.96)
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SmartLinPair
CompleteLinPair

WordPiece

Results LinPair Tokenization

 Tokenization comparison by F1 micro score

 CompleteLinPair (0.96) outperform 

 SmartLinPair (0.94) and

 WordPiece (0.89)



Effects of Linguistic 

Enhancement
Classifier 

 LLM DistilBERT (1) improved by 17%,

 Support Vector Machine (2) decreased.

Tokenisation

 SmartLinPair (3) and CompleteLinPair (4) 

leads to increase of classification quality.

Feature Selection

 WUP (Ux, Uy, and Us) had a negative impact.

Linguistically enhanced preprocessing yields 

improvements in text classification performance.

Using a finetuned LLM and CompleteLinPair the 

increase is 7.5% F1-Micro Score 

and 16% Hamming Score.
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Relative gain using linguistic techniques compared to standard procedure

(2)

(1)
(3) (4)



Thank you.

Daniel Schönle 

schoenledanielhfu@gmail.com
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