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Abstract—California requires utility companies to implement 

wildfire-mitigation plans to prevent and reduce the risk of 

catastrophic fires. Manually tracking and evaluating widely 

distributed equipment, often in very rural and rough terrain, is 

expensive and labor intensive. This paper demonstrates proof 

of concept for a light detection and ranging (LiDAR) point-

cloud data-processing tool and explores the potential benefits 

associated with such a tool. LiDAR is widely used for various 

applications, including mass asset surveys, vegetation 

management, and structural-load analysis. The authors 

explored various ArcGIS geoprocessing tools as part of this 

study. In summary, this paper provides valuable insights into 

using ArcGIS tools for LiDAR processing and highlights the 

potential benefits of accurate geolocation data extraction from 

LiDAR point clouds within utility service territories. 
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I. INTRODUCTION 

Light detection and ranging (LiDAR) can offer potential 
benefits to California utilities struggling to reduce the cost of 
tracking their widely distributed assets. 

A. Problem Statement 

In 2018, California enacted Senate Bill 901 requiring 
utility companies to implement wildfire-mitigation plans to 
prevent and reduce the risk of catastrophic fires caused by 
their equipment. As part of these plans, utility companies 
must conduct regular visual inspections of their assets, such 
as power lines, poles, transformers, and substations, 
according to their type and rate of service. These inspections 
range from 12 to 24 months for routine maintenance, to 3 to 
5 years for comprehensive examination. However, inspecting 
these assets is not an easy task, as they are often located in 
remote and rugged areas, where access is limited, and terrain 
is challenging. Sending crews of inspectors to these locations 
is time consuming and costly and may not capture all the 
relevant information needed to assess the condition and 
performance of the assets. 

To overcome these challenges, utility companies use 
LiDAR technology, which uses laser pulses to measure the 
location and reflectivity of objects in three dimensions. 
LiDAR can capture high-resolution point-cloud data of the 
utility assets and their surroundings, which can be used by 
utility companies to identify, locate, and monitor their assets 
more accurately and more efficiently. However, processing 
and analyzing LiDAR data is not a trivial task; it requires 
specialized software and expertise. Many utility companies 

currently outsource this task to third-party vendors, which 
adds to their expenses and reduces their control over data 
quality and security. 

To address this issue, utility companies can benefit from 
developing their own LiDAR data-processing tools, which 
would allow them to bring the processing in-house and save 
on vendor fees. A LiDAR data-processing tool would help 
utility companies automate the extraction and classification 
of assets from point-cloud data and improve their 
geolocation accuracy and reliability. This would result in 
better wildfire-mitigation plans, as utility companies would 
have more up-to-date and detailed information on their assets 
and their potential fire hazards. 

B. Objectives 

This paper demonstrates a proof of concept for a LiDAR 
data-processing tool that would allow utility companies to 
process and analyze their own LiDAR point-cloud data. The 
paper also investigates the potential benefits of this tool for 
improving utility asset management and fire-risk assessment. 

Utility companies use LiDAR for various purposes: 

• Mass asset surveys: LiDAR can help identify the 
components and configurations of each pole in the 
service territory, such as wires, cross-arms, 
insulators, and transformers. 

• Vegetation management: LiDAR can help survey the 
trees and vegetation that may infringe on the 
distribution lines and pose a fire hazard or a 
reliability issue. 

• Structural load analysis: LiDAR can help determine 
the number and condition of poles in high-fire-risk 
areas and help assess their structural integrity and 
load capacity. 

Utility companies are constantly improving the quality of 
their asset data by identifying and resolving data-quality 
issues, such as missing, inaccurate, or outdated information. 
They are also working on forecasting fire hazards using data-
driven models and methods to estimate the probability and 
severity of fires caused by their equipment. 

LiDAR offers the opportunity to extract more accurate 
geolocation data for utility assets, which can enhance the 
quality and reliability of the asset data and improve the 
accuracy and efficiency of the fire-hazard models. 

This paper offers a first use case in studying the potential 
benefits of developing a LiDAR data-processing tool for 
utility companies. The paper will also evaluate the feasibility 
and scalability of the tool and identify the challenges and 
opportunities for future development. 



II. BACKGROUND AND OVERVIEW OF LIDAR DATA 

PROCESSING TOOLS 

LiDAR, a remote-sensing technology, uses pulsed lasers 
to measure and record distances, heights, and depths of 
objects and areas. It accurately, precisely, and flexibly 
examines natural and artificial environments. LiDAR data 
are collected aerially or terrestrially using an unmanned 
aerial vehicle (UAVs) or unmanned ground vehicles 
(UGVs). Technicians remotely operate UAVs to scan areas 
of interest from altitudes greater than ten meters. At a 
minimum, this process requires a two-person team to 
remotely operate the UAV and verify the data is correct [1]. 
Software can read these point-cloud data for further 
processing. In contrast, UGVs’ detection distances range 
below ten meters to perform precise geometric 
measurements. UAVs and LiDAR data provide several 
benefits over sending people to physically inspect all assets 
of interest. For instance, a UAV can easily scan large areas 
without regard to terrain (steep slopes, dense forests, etc.). 

Several studies have examined the extraction of objects 
from point-cloud data. For instance, Van Leeuwen and 
Nieuwenhuis [2] examined the current and future potential 
for leveraging LiDAR data to assess and manage forest 
structures, specifically how remote sensing and classification 
can identify specific trees in clusters and more closely 
identify species. The article is relevant to this use case 
because this study examines whether LiDAR can be used to 
identify power poles and structures, which may be imbedded 
in forests or other rural areas. Van Leeuwen and 
Nieuwenhuis demonstrate that remote sensing techniques 
may help identify objects in a forest (in their case, individual 
trees) and conclude that further research is needed to assess 
remote sensing and forest management, as well as using 
models to recognize objects within point-cloud data [2]. 
Power poles and towers may blend into a forest canopy, as 
do to individual trees. 

In 2009, Prokhorov [3] examined how 3D LiDAR 
imaging could be used in conjunction with a recurring neural 
network (RNN) to identify different objects. With the 
progression of scanners, 3D LiDAR images provide 
enhanced measurement data [3]. Prokhorov investigated how 
the space of points between various objects could be 
leveraged to create a model to recognize objects [3]. This 
research concluded that the RNN model showed promise, 
and that further research into training RNN models is 
warranted, as is pursuing better 3D data. 

Maggiori et al. [4] created an end-to-end framework to 
classify satellite imagery using convolutional neural 
networks (CNNs). In their study, they observed how a CNN 
has significant advantages when classifying satellite imagery 
data to identify objects and produce quality imagery. 
However, they also noticed that untrained models did not 
perform as well. They leveraged an existing model and 
constructed a set of manually classified data and saw 
significant improvement in the model. Therefore, they 
propose a two-step approach leveraging a small set of 
manually classified data to train a model to classify a large 
set of unclassified data. 

Kudinov [5], working with ESRI and AAM Group, used 
the point-convolution neural-network (PointCNN) framework 
to automatically identify power lines and poles. The group 
used artificial intelligence for the labor-intensive task of 
manually labeling the point cloud. Their study area was a 
city in Australia, and their dataset contained around 540 
million points. They trained their PointCNN model using 
four classes: other, wires, stray wires, and utility poles to 
successfully identify power poles. 

Fan et al. [6] studied the you-only-look-once (YOLO) 
deep-learning algorithm to detect objects in point-cloud 
datasets. The focus of their research was object detection for 
self-driving vehicles. These vehicles need real-time 
information to make decisions and avoid collisions. 
Consequently, the researchers propose an alternative 
computationally efficient algorithm dubbed LS-R-YOLOv4 
using color images and point-cloud data to precisely segment 
and detect objects. Borcs et al. [7] proposed a pipeline that 
quickly classifies point clouds. One component of this 
pipeline is a CNN trained to classify objects. The model 
supports the identification of vehicles and pedestrians in 
urban settings. 

Brubaker et al. [8] showed that LiDAR data can be used 
to accurately pinpoint micromorphology of a large area and 
compared their results to field-surveyed plots to determine 
their accuracy. They compared a digital-elevation model 
(DEM) generated from LiDAR data to the surveyed plots. 
Their research model was accurate to within 0.3–0.4 m based 
on manual surveys, which is accurate up to a single point in 
the point cloud. Their data allowed them to generate the 
surface constraint of the surveyed area faster and from a 
greater distance compared to a traditional survey. The DEM 
is important as it allows LiDAR data to be accurately 
separated into ground, water, and any surface constraints 
based on elevation. 

Azevedo et al. [9] showcased the use of UAVs to replace 
helicopters to reduce risks and associated costs. UAVs and 
LiDAR have lower equipment costs over time, as a team of 
just a few people can ensure that the data is correct and 
control the UAV. Equipped with the proper sensors, the 
UAV is able to quickly scan a large area and send data back 
to the controller. From there, the LiDAR data can be 
converted to point-cloud data and fed through an algorithm 
and software to help identify and sort items in the LiDAR 
data. They argue that, while the algorithm they used failed to 
correctly identify possible points, those points were 
classified as unidentified due to the difficulty of 
differentiating between vegetation and other objects. They 
conclude that a more powerful algorithm may correctly 
identify the points of interest and that graphics processing 
units can be used to reduce the time required to process the 
raw data. 

Nahhas et al. [10] proposed machine learning with 
LiDAR data and orthophotos. They showed that the CNN 
algorithm was able to transform, organize, and label the data. 
With the orthophotos and LiDAR data, they created a digital 
surface model, DEM, and shapes. They also input other data 
to detect buildings. From their findings and experiments, the 
CNN and machine-learning model accurately classified 



background and buildings up to a single data point and drew 
the geometry and shapes of the building from the LiDAR 
and orthophotos. Using this model, they were able to 
transform low-level detail into highly detailed, classified 
features. 

Sultan et al. [11] empirically focused on machine 
learning to identify power poles and towers from point-cloud 
data. This study sought to demonstrate the use of a deep-
learning model developed by Azevedo et al. [9] to determine 
whether deep learning is a viable solution for identifying 
power assets in three California areas. This study instantiated 
an existing trained model to determine whether deep learning 
is an effective solution for extracting desired objects from 
point-cloud data. The deep-learning model successfully 
identified power poles in both rural and urban areas. 
Although the model performance was better in urban areas 
than in rural areas, this study supports the literature that deep 
learning can successfully classify point clouds. To improve 
the model performance and to ensure optimal results when 
training the model, the authors suggest more accurately 
labeled data representing the objects of interest. 

LiDAR data serves as a cost-efficient alternative for 
surveying large areas of land and generating real-time 
images of objects on the ground. The point-cloud data 
generated by scans can be analyzed to identify assets in need 
of maintenance. In addition to the efficiency afforded by 
LiDAR, utility companies can potentially lower labor and 
transportation costs by not sending maintenance crews into 
the field unnecessarily. The cost of LiDAR depends on the 
type of equipment purchased and the range and scope of 
work [12]. LiDAR drones can potentially be cost effective in 
difficult-to-reach forested areas, rural towns, or high 
elevations. LiDAR can also be used in densely populated 
areas such as urban or suburban areas [13]. The high upfront 
cost leaves just maintenance of the equipment, future 
upgrades, and pilot licensing as needed [14]. These costs can 
be calculated in advance, while the ongoing costs of 
dispatching workers depend on the scope of work and may 
not be easily estimated due to fluctuating rates of pay [15]. In 
many cases, contractors may need to be hired in areas that 
are difficult to reach and may not have the exact quality 
control utility companies need. On the other hand, manually 
assessing and inspecting equipment is beneficial as the 
information about them can be updated in real time, whereas 
LiDAR data must be processed and analyzed to ensure the 
data are error free [9]. A high-scale scan must be performed 
of target areas to produce error-free point-cloud data and 
these data must be processed to ensure assets are correctly 
identified [10]. LiDAR technology provides several benefits 
when surveying objects. Therefore, this study sought to answer 
the following question. Can a utility company process 
LiDAR point-cloud data to accurately define asset locations? 

The literature suggests deep learning can be used to 
classify objects of interest. Therefore, this study will 
instantiate the deep-learning model deployed by Sultan et al. 
[11] to determine its effectiveness at processing sample 
point-cloud data. In addition, other ArcGIS Pro classification 
tools will be studied and tested to gauge their effectiveness at 
classifying poles and towers. This study may be of interest to 

executive teams of utility companies, as it can help them 
decide whether to bring the LiDAR data-processing in-house 
and the potential benefits of doing so. For example, by 
processing and analyzing their own LiDAR data, utility 
companies may be able to improve the accuracy of their 
asset location data, which can enhance their asset 
management and fire-risk assessments. 

III. METHODOLOGY 

For this project, the authors will explore ArcGIS 
geoprocessing tools, including the deep-learning model 
deployed, image analytics, and additional tools that 
complement ArcGIS. Sultan et al. [11] classifies the tools 
used into three categories: (a) data conversion, (b) deep 
learning, and (c) LiDAR Aerial Survey (LAS) conversion.  

ArcGIS Pro software from the Environmental Systems 
Research Institute (ESRI) provides three tools to classify 
data, train a model, and use a model for point-cloud data 
classification. The following ArcGIS Pro classification tools 
will be explored and tested by the project team: 

• Classify LAS Ground 

• Classify LAS Building 

• Classify LAS by Height 

• Classify LAS Noise 

• Change LAS Classification Codes 
Phase 1 of this project will include exploration of the 

tools to evaluate whether ArcGIS Pro LAS-classification 
tools will support the classification of power poles and 
towers. A preliminary recommendation should follow Phase 
1. Given a positive recommendation, Phase 2 of the project 
may start to train the model on some sample point-cloud data 
to give it the best chance of correctly identifying buildings 
and electrical-system assets in the service territory. 

• Goal: Classify LiDAR points as wire conductors, 
transmission towers, and high vegetation. 

• Software: ArcGIS Pro 3.1.2 with Advanced 
functionality (e.g. 3D Analyst Tools) and ArcGIS 
Pro 3.1 Deep Learning Frameworks. 

A. System Preparation 

To prepare a conventional personal computer to run 
ArcGIS Pro and the other software used in this work, update 
the computer system and software with the latest versions 
and drivers. After updating ArcGIS Pro to version 3.1.2 or 
higher, install the Deep Learning Library downloaded from 
the ESRI website. 

B. Data Preparation 

1) Training the Classification Model 
Preparation work not covered in this guide involved the 

classification model and training dataset. Training data were 
validated, and a classification model was trained using the 
validated training data. 

That work was done using the step-by-step instructions in 
“Learn ArcGIS tutorial” [16] with some modifications for 
Classes 05, 14, and 15, and the maximum number of epochs 
(50) was set in the Train Point Cloud Classification Model 



tool in “Train point cloud classification model” [17] and 
“Classify powerlines from lidar point clouds” [18]: 

The LAS dataset had to be converted into smaller 
training blocks using the Prepare Point Cloud Training Data 
geoprocessing tool in ArcGIS Pro. Ground (Class 2) and 
noise (Class 7) points were excluded from the training data. 
As Ground points typically account for a large portion of the 
total points, excluding ground points made the training 
process quicker. Block Size and Block Point limits were 
determined by the training and validation dataset.  

Next, the Train Point Cloud Classification Model 
geoprocessing tool was used to train a model for classification. 
The focus of the model training was on three specific classes: 

• 05 – High Vegetation 

• 14 – Wire Conductor 

• 15 – Transmission Tower 
That meant in addition to 14 – Wire Conductor, the 

settings were adjusted in Class Remapping to include the 
those shown in Fig. 1. Those determinations were made after 
reviewing the diversity of classes in the point cloud data in 
the Layer Properties (Fig. 2). 

 

Figure 1.  Class remapping settings. 

 

Figure 2.  Layer properties dialogue. 

Existing 01 – Unassigned were remapped as unassigned. 
Since 02 – Ground and 07 – Noise were excluded from the 
training data in an earlier step, they are subsequently ignored 

in this model. Any points classified as 06 – Building are 
remapped as “OTHER” into 01 – Unassigned. 

The validated training data (Fig. 3) depicts 14 – Wire 
Conductor in yellow, 15 – Transmission Tower in blue, and 
05 – High Vegetation in green. Data classified as 07 – Noise 
appears in red, 02 – Ground appears as brown, and 01 – 
Unassigned as gray. A fully rendered detail image (Fig. 4) 
shows 14 – Wire Conductor (yellow) among areas where 05 
– High Vegetation is taller than the transmission lines. 

Training Loss and Validation Loss values (Figs. 5, 6, and 
7) generally decreased, indicating the model learned from the 
process. After 50 epochs, the highest recall is over .93. 

 

Figure 3.  Validated training data. 

 

Figure 4.  Fully rendered detail image. 

 

 

Figure 5.  Training loss and validation loss progression. 



 

Figure 6.  Ground truth / predictions: Loss versus batches processed. 

 

Figure 7.  Ground truth / predictions: 3D graphs. 

 

Figure 8.  Highest recall value for 14 – Wire Conductor. 

 

Figure 9.  Test run. 

The best epoch was chosen based upon the highest recall 
value for 14 – Wire Conductor. As shown in Fig. 8, that was 
Epoch 32 with a recall value of 0.992211066 for 14 – Wire 
Conductor. 

A test run used the trained model to classify 3.2 million 
cloud points previously comprised of ground points (Class 
2), low-noise points (Class 7) and unassigned points (Class 
1) and classified them into Wire Conductor (Class 14) in 
yellow, Transmission Tower (Class 15) in blue, High 
Vegetation (Class 5) in green, and Unassigned (Class 1) in 
gray (Fig. 9).  

IV. CONCLUSION AND FUTURE WORK  

The aim of this paper was to demonstrate a proof of 
concept for a LiDAR point-cloud data-processing tool and 
explore the potential benefits associated with such a tool. 
LiDAR is widely used for various applications, including 
mass asset surveys, vegetation management, and structural-
load analysis. The authors explored various ArcGIS 
geoprocessing tools as part of their study: 

• Classify LAS Ground: This tool identifies ground 
points in LiDAR data. 

• Classify LAS Building: This tool is used to classify 
building points. 

• Classify LAS by Height: This tool segments points 
based on height. 

• Classify LAS Noise: This tool identifies noise 
points. 

• Change LAS Classification Codes: This tool allows 
modification of classification codes. 

Next steps and future work include importing LiDAR 
data, converting LAS to LASD, and offering a step-by-step 
guide to classifying the converted LAS point-cloud data 
using the trained model. In summary, this paper provides 
valuable insights into using ArcGIS tools for LiDAR 
processing and highlights the potential benefits of accurate 
geolocation data extraction from LiDAR point clouds within 
utility service territories. 
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