# Ambiguity of fuzzy measure and

inner dependency matrix in AHP from a viewpoint of sensitivity analysis

> Shin-ichi Ohnishi, Takahiro Yamanoi Hokkai-Gakuen University, Japan Hokkaido University, Japan

# Introduction

Analytic Hierarchy Process (AHP) methodology is a very convenient and popular in the multi criterion decision making field.

- ✓ Criteria must be independent perfectly, because additive measure weight
- ✓ Data matrix must have enough consistency for its reliability.

HOWEVER, it is very hard in practice

- > Perfect independence among criteria in the hierarchical structure.
- > Enough consistency in the data matrix.

Extended methods

- fuzzy measure AHP
- Inner dependence AHP

In this study

Consider how to treat ambiguity or vagueness in these two extension methods, and compare these two methods from a viewpoint of their sensitivity analysis.

## **Fuzzy Measure AHP (Ichihashi 1989)**

- An extension of the Normal AHP
- Using fuzzy measure as non-additive weight
- Employing Choquet integral for aggregating total priority.
- Two types of decision by use of non-additive fuzzy measure
  - Substitutive decision (possibility measure)
  - Complementary decision (necessity measure)

• The reversals of the priority order due to the addition of a similar activity

#### **Overall weights of fuzzy AHP**

<Substitutive decision> The upper limit expectation based on possibility measure

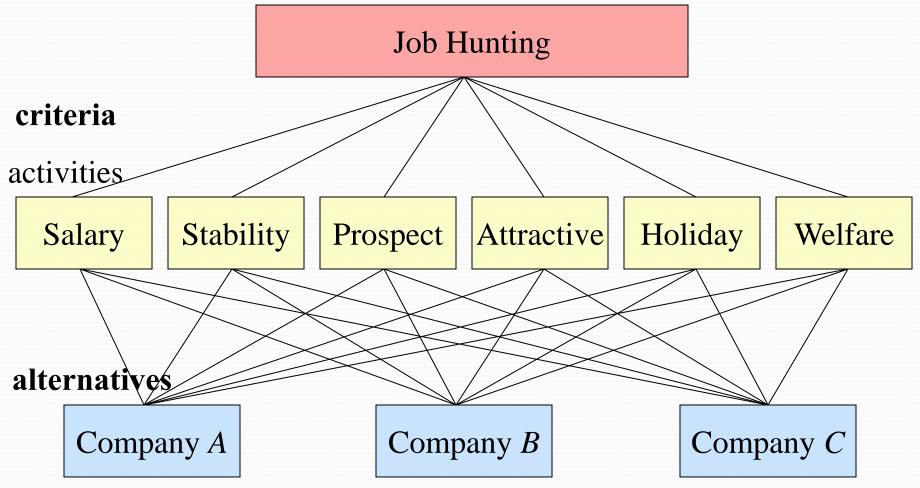
$$y_p^{(\text{Pl})} = \sum_{l}^{q} m(A_l) \max_{x_i \in A_l} f_p(x_i)$$

<Complementary decision>

The lower limit expectation based on necessity measure  $y_p^{(Bel)} = \sum_{l}^{q} m(A_l) \min_{x_i \in A_l} f_p(x_i)$ 

 $f_p(x_i)$ : weights of *p*-th alternative with respect to  $x_i$ 

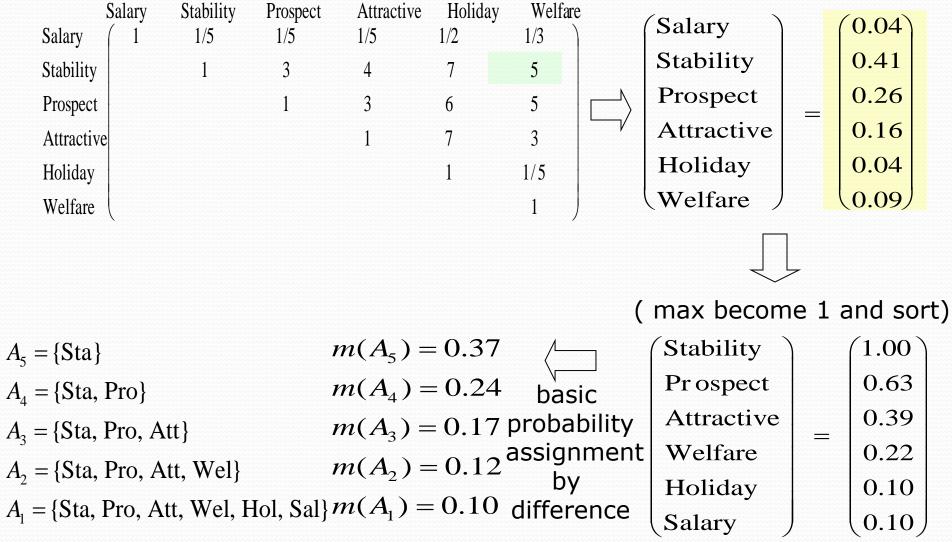
|                     | 1.             | <b><u>Representation by a hierarchy</u></b><br>Pairwise comparison matrices |
|---------------------|----------------|-----------------------------------------------------------------------------|
| Hierarchy structure | 2.<br>3.<br>4. | (Consistency check)<br>Local weights of criteria                            |
| •                   | 5.             | Global weights of alternative                                               |



#### **Example: Fuzzy measure AHP**

#### (P2)pairwise comparison matrix

#### (P4)weights of activities



#### Example: Fuzzy measure AHP

|                      | $m(A_5)$ = | = 0.37              | $A_5 = \{Sta\}$                    |                                                              |  |  |
|----------------------|------------|---------------------|------------------------------------|--------------------------------------------------------------|--|--|
| Basic<br>probability | $m(A_4)$   | = 0.24              | $A_4 = \{$ Sta, Pro $\}$           | Subsets of<br>focal                                          |  |  |
|                      | $m(A_3) =$ | = 0.17              | $A_3 = \{$ Sta, Pro, Att $\}$      |                                                              |  |  |
| assignment           | $m(A_2)$   | = 0.12              | $A_2 = \{$ Sta, Pro, Att, Wel $\}$ | element                                                      |  |  |
|                      | $m(A_1) =$ | = 0.10              | $A_1 = \{$ Sta, Pro, Att, Wel, H   | ol, Sal}                                                     |  |  |
|                      |            |                     |                                    |                                                              |  |  |
| (P4)Local weights of |            |                     |                                    |                                                              |  |  |
| •                    | alterr     | native <sub>p</sub> | $\mathbf{v}^{(\mathrm{Pl})}$ -     | $-\sum_{q}^{q} m(A) \max f(r)$                               |  |  |
|                      |            | Company A           | $\sum y_p$                         | $=\sum_{l}^{q} m(A_{l}) \max_{x_{i} \in A_{l}} f_{p}(x_{i})$ |  |  |
|                      | Stability  | 0.121               |                                    | 0.150                                                        |  |  |
|                      | Prospect   | 0.180               |                                    | = 0.158                                                      |  |  |
|                      | Attractive | 0.070               |                                    | <u>q</u>                                                     |  |  |
|                      | Welfare    | 0.121               | $v_n^{(\text{Bel})}$ =             | $= \sum m(A_i) \min f_n(x_i)$                                |  |  |
|                      | Holiday    | 0.157               | Jp                                 | $=\sum_{l}^{q} m(A_{l}) \min_{x_{i} \in A_{l}} f_{p}(x_{i})$ |  |  |
|                      | Salary     | 0.158               |                                    |                                                              |  |  |
|                      |            |                     |                                    | 0.101                                                        |  |  |

## Inner dependence AHP

#### Saaty 1991

By dependency matrix  $F=(f_{ij})$ , modified weights  $w^{(n)}$  considering dependency relation

$$\boldsymbol{w}^{(n)} = F\boldsymbol{w}$$

- *w* is weight vector assuming independency among elements (weight of normal AHP)
- *F* is determined by eigen vectors of influence matrix.

# Fold vaseJ This pot x: 100 years old (crisp) Set A: old vase: not determined how old (fuzzy)

**Fuzzy Set** 



Fuzzy theory

**Fuzzy Measure** 

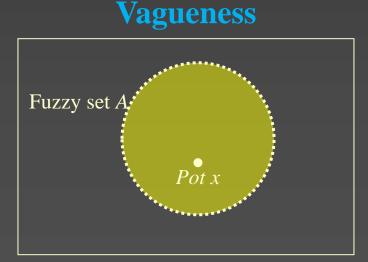
[old vase]

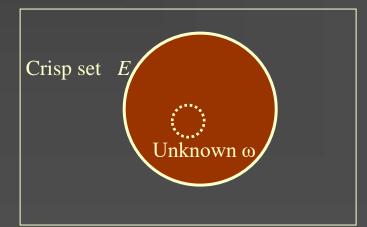
<u>This pot</u><sub>ω</sub>: unknow how old (fuzzy)

<u>Set E: old vase</u> : over 100 years old (crisp)



#### Ambigyuity







## Fuzzy measure AHP

- Fuzziness to resolve is "ambiguity" because it is about fuzzy measure
- > It is difficult for decision maker to understand results.
  - ✓ Weights of subsets but not of each criterion (elements)
  - $\checkmark$  Fuzzy integral as aggregation.
- Deep knowledge of experts is not necessary

## Inner dependence AHP

- Fuzziness to resolve is "ambiguity" because it is about dependency among criteria
- > It is easy for decision maker to understand the method.
- Deep knowledge of experts is necessary, furthermore it is difficult estimate exact influence.
  - ✓ "vagueness" may remain.

# Steps of sensitivity analysis

- (i) Giving perturbation  $\varepsilon a_{ij}d_{ij}$  to each element  $a_{ij}$
- of matrix A.
- (ii) Representing fluctuation of consistency or weight by linear combination of  $d_{ij}$ .
- (iii) Estimating amount of influence by coefficient of  $d_{ij}$ .

$$A(\varepsilon) = A + \varepsilon D_A$$

$$A = a_{ij}(i, j = 1, \dots, n)$$

perturbation 
$$D_A = (a_{ij}d_{ij})$$

# Sensitivity analysis of *weight in normal AHP*

**<u>Corollary 2</u>** (Ohnishi et al. 1997) The weight of the perturbed comparison matrix  $w(\varepsilon) = w + \varepsilon \sum_{i}^{n} \sum_{j}^{n} h_{ij}^{(k)} d_{ij} + o(\varepsilon)$  $h^{(k)}_{ii} : \text{const.}$ 

# Sensitivity analysis of *weight* in *fuzzy measure AHP*

<u>**Theorem2**</u> (substitutive decision)

 $y_{p}^{(\text{pl})}$ : overall weight of the *p*-th alternative based on *A*  $y_{p}^{(\text{Pl})}(\varepsilon)$ : overall weight of the *p*-th alternative based on peterbed data matrix  $A(\varepsilon)$ (p=1,...,m)

$$y_p^{(\text{Pl})}(\varepsilon) = y_p^{(\text{Pl})} + \varepsilon \sum_{i,j}^n \left\{ \sum_{l=1}^q (h_{ij}^l - h_{ij}^{l-1}) \max_{x_i \in A_l} f_p(x_i) \right\} d_{ij} + o(\varepsilon)$$



# Viewpoint of their sensitivity analysis

#### Fuzzy measure AHP

- > Not for weights but for basic probability assignment.
- > Useful for total weight of alternatives

## Inner dependence AHP

- Not only analysis for local weights but also it for dependency matrix from influence matrix.
- > Useful for modified weight of criteria



## Summary

- Consider how to treat ambiguity or vagueness in these two extension methods, and compare these two methods from a viewpoint of their sensitivity analysis.
- > In two extended AHP, fuzziness to resolve is "ambiguity"
- ➢ For decision maker inner dependence AHP is easy to understand.
- it is difficult estimate exact influence, "vagueness" may remain in inner dependence method.
- Deep knowledge of experts is not necessary in fuzzy measure AHP

#### from a viewpoint of sensitivity analysis

- Sensitivity analysis for weight is also useful for basic probability assignment total weight of alternatives in fuzzy measure.
- Results are useful for modified weight of criteria and dependency matrix in inner dependence AHP.