Ontology-Based Integration of Occupational Health Data: Method ar Case Studies

Cassandra BARBEY^{1,2}, Malika Smaïl-Tabbone³, Nathalie Bonvallot², Frédéric Cl

¹ Department of Pollutant Metrology, French Research and Safety Institute for the Prevention of Occupational Accidents and I (INRS), 54547 Vandœuvre-lès-Nancy, France

- ² Univ Rennes, Inserm, EHESP, Irset- UMR_S 1085, Rennes, France
- ³ LORIA Université de Lorraine, CNRS, LORIA, UMR 7503, Vandœuvre-lès-Nancy, France

Presentation

- The work presented here was developed as part of my PhD thesis
- This thesis is the result of a joint agreement between INRS and EHESP.
 - INRS: French Research and Safety Institute for the Prevention of Occupational Accide Diseases (funder)
 - EHESP: French School of Public Health
- The work and the presentation will focus on public health data.

Introduction

- Workers are exposed to a number of risks that can affect their health.
 - > These risks are caused by *occupational exposures*
 - > The study of their effects is known as occupational health
- In France, several datak
 - Information on occupa
 - Specific objective : to c
 - Various collection metl

orkers' health. occupational diseases to describe

Sumer	C2P	Colchic / Scola	The		AT-MP	Evrest	МСР	RNV3
National surveys	Regulatory declarations	Sampling and analysis of workplace air by specialised chemistry laboratories			Medical consultation	Systematic occupational health interviews	Compulsory professional medical consultation	Medio consultatio specialist o
Worker	Worker	Measurement	Measurement	Occupational group	Worker	Worker	Worker	Health pro

• It is difficult to use all data together.

Introduction

- DataPOST : methodology for pooling information from several databases
 - Several studies or projects have tried to develop a methodology
 - L. Rollin et al., « Complementarity of 4 data bases in occupational health », Arch. Mal. Prof. Environ., vol. 82, 261-276, May 2021, doi: 10.1016/j.admp.2020.11.002.
 - <u>https://data.risquesautravail.be/fr</u>
 - Applying this methodology to all types of industry
 - > Allowing for a detailed analysis of individual and combined exposures

<u>Objective</u> : Bring together information from 10 French databases to impr knowledge about occupational exposures and their effects on health

- 1. Integrate data with a structured methodology
- 2. Use integrated data in two cases studies

<u>Step 1</u>:

Integrate data with a structured methodology

OBDI approach

• OBDI: Ontology-Based Data Integration

- > Bring together heterogeneous data by linking them to an existing ontology
- D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, « Ontology-Based Data Access Integration », in Encyclopedia of Database Systems, 2017, pp. 1-7. doi: 10.1007/978-1-4899-7993-3_80667

Ontology = formalised description of the concepts of a domain

Mapping = link between data and ontolog

Data sources = heterogeneous data

General representation of the concept

General representation of the health occupational data

General representation of the health occupational data

- Integration of 10 databases using the OBDI method
 - Enable us to structure our data
 - 12,835 occupational groups
- First focus on the construction sector:
 - ➢ 816 occupational groups
 - ➢ 308 occupational exposures
 - 174 occupational diseases
- Second focus:
 - > 10 most exposed occupational groups
 - 15 most serious exposures and diseases

<u>Step 2</u>:

Use integrated data into two cases studies

- Quantify several exposures and diseases for each occupational group
- Create an indicator for each exposure and each disease
 - Group together databases with similar characteristics

Example of the skilled the "special constructio	Database 1	Database 2	Database 3	Database 4	Database 5	Database 6	Database 7	
	Value	А	No data	В	No data	No data	No data	C
Exposure:	Similar characteristics	Number of workers exposed		Number of declaration of exposure		Intensity of exposure		Number o caused by
Manual handling of heavy loads	Score (0-1)	Score 1		Score 2		Score 3		Scoi
	Indicator (0-4)	Sum of the four scores						

- Many indicators have been created.
- Exposure and disease indicators were represented using a heatmap.

inrs (

ed industrial building male workers in the "civil engineering" sector male workers in the "special construction" activity sector

Improved preventive measures

Powered exoskeletons cou help reduce the risks associa with manual handling of he loads, repetitive movements also awkward postures.

- Assess the consistency of data across the databases for each exposure and disease
 - > Number of databases confirming an exposure or a disease
- The greater is the number of databases with information reporting an expo or a disease, the higher is the consistency.
- Exposure and disease consistency were represented using a heatmap.

ΠΓS

inrs 0

Conclusion and future work

- Structuring data and reconciling occupational health ontologies has enable to improve knowledge about occupational exposures and their effects on h
- Several perspectives are considered with integrated data:
 - > Have a better adaptation of our data to the ExO ontology
 - Search for correlations between exposure and disease indicators
 - Create a visualisation tool
- A future project would be to generalise the methodology to integrate othe databases.

s to E. Algava and M. Duval (Dares), L. Meunier (CNAM), C. Pilorget, J. Chatelot and J. Homère (SPF), C. and A. Aachimi (Anses), L. Rollin and A. Leroyer (Evrest) for providing data.

Thanks for your attention

Any question ?

