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& SCADA Vulnerabilitie

(((l))) Operational Technology (OT)

Introduction

Evolving Cyber Threats in
Critical Infrastructure (ClI)
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 Research Question:

o How cansecondary threat intelligence
sources enhance real-time detection of
security breaches in SCADA systems?

|ntI’OdUCtIOnZ * Methodology:

. o Utilizing Bayesian inference and dynamic
Resea rC h Al m anomaly scoring to continuously update and

Improve situational awareness.

e Contribution:
o GenAttackTracker framework
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Online Anomaly Detection

e Supervisory Control Data

o Time-series data
o Anomalies = deviation from expected normal behavior

* Challenges in Anomaly Detection
o Diverse Causes of Anomalies
o ldentifying True Threats
o Real-time Detection
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Suspicious Activity Markers

Contextual data points that provide additional
Insights into potential cyber threats.

Examples:
Unusual data transfer activity.
Login attempts from suspicious locations.

Communication through non-standard ports.
Abnormal spikes in traffic (e.g., SMTP, DNS).
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Bayesian Analysis

Continuously updates the probability of an attack
as hew data becomes available.

Why Bayesian?
* Handles uncertainty in threat detection.

* Incorporates both control data and Suspicious Activity Markers (SAMs) for more
iInformed decisions.
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AttackTracker Framework

* Hierarchical distributed network of detectors.
o Local detectors: Behavior Predictor + Inference Engine
o Higher level detectors: Inference Engine

* Key components:
o Behavior Predictor: MTCN
o Inference Engine: Dynamic Scoring , Modified z-score

IARIA .
CYBER 2024 - Venice, ltal
JARSEAN Y




GenAttackTracker Framework
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GenAttackTracker Framework
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GenAttackTracker Framework
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GenAttackTracker Framework
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GenAttackTracker Framework
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Inference Engine — Bayesian Model

 Hierarchical Model
e Local Detectors

 Intermediate Level
 Global Level

« Key formula: Prior

P(Xi|Attack@-) . (H;V:I (pz-,j X weighti’j))(-'P(Attacki)J
P(X;) - P(SAM;) )

P(Attackz- |Xz, SAMz) =
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Inference Engine — Bayesian Model

 Hierarchical Model
e Local Detectors

 Intermediate Level
 Global Level

* Key formula: Likelihood

(FT(XJAttack@) . (Hj\;l (pi,j X Welghtzjj)) . P(Attack@)
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Inference Engine — Bayesian Model

 Hierarchical Model
e Local Detectors

 Intermediate Level
 Global Level

* Key formula:

P(X;|Attack;) - (Hff: | (pij % weighti’j)) . P(Attack;)
[Pattac i 540 P(X;) - P(SAM;)

Posterior
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Experiments

 Baseline: AttackTracker framwork

* Dataset: SWal (Secure Water Treatment Testbed)
* 11 days of operation, including 7 days of normal behavior and 4 days of

cyberattacks.
* 51 variables: Sensors (e.g., flow, pressure) and actuator states (e.g., valve

positions, pump statuses).

* Implementation:
* Toolset: TensorFlow, PyMC3, Scikit
* Monte Carlo Simulation
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Experiments

: Input: SCADA data X, Suspicious Activity Markers

(SAMs) S, anomaly score A

¢ B ase |.| ne. Atta C kTra C ke r fra . Output: Posterior probability of attack

: procedure COMPUTELIKELIHOOD(X, A)

'Y D ata Set: SWaT (Secu re Wat 4: Compute likelihood L based on SCADA data and

anomaly score

* 11 days of operation, includig > returnL s of
: end procedure
Cyberattacks. . procedure CHOOSEPRIORS
. : Set prior P, based on historical SCADA data
° 51 Varlables: SensorS (e-g-, f : Set prior Pg4s from external tools for SAMs Valve

positions, pump statuses). ¢ return Poggack, Psan

: end procedure
: procedure UPDATEPOSTERIOR(L, Pyttack, Psan)

i ) LXPyttack XPsAm
Update posterior Ppostemor A marginal_likelihood

. . return P, . icrior
* Implementation: . end proceduce
. . : procedure BAYESIANINFERENCE(X, S, A)
Toolset: TensorFlow, PyMCS’ L + COMPUTELIKELIHOOD(X, A)

e Monte Carlo Simulation . Puttack; Psanr — CHOOSEPRIORS

Ppostem'o?" — UPDATEPOSTERIOR(L: Pattack: PSAM)
return PposteriOT
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Experiments

* Insightful results

* Provided more reliable threat assessments by continuously updating the
posterior probabilities.

* Incorporating SAMs refined
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Experiments

® I n Sightfu l re S u lts Combined Likelihood from SCADA Variables and SAMs
* Provided more reliable §h = Lieinood AT201
posterior probabilities.
* Incorporating SAMSs ref

Likelihood
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Experiments

* Insightful results

* Provided more reliable
posterior probabilities.

* Incorporating SAMSs ref
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Sequential Bayesian Updates: Prior to Posterior Evolution

—— Original Normal Prior
—— First Posterior (New Prior)
—— Second Posterior

0.4 0.6
Probability of Attack
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Conclusion

* GenAttackTracker Contributions:

* Combined dynamic anomaly scoring with Bayesian inference for enhanced
situational awareness.

* Key Achievements:

* Improved Threat Detection: Increased accuracy in identifying cyber threats with
fewer false positives.

* SAM Integration: Suspicious Activity Markers provided additional context,
improving the reliability of threat assessments.

* Monte Carlo Simulation: Reduced uncertainty in attack likelihood estimation
through probabilistic simulations.

* Future Work:
* Expand the modelto analyze interconnected infrastructures.
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Thank you!

Questions
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