
Towards Unified Formal and
Creative Software Development

Keynote, Computation World 2024, April 17, Venice

Hans-Werner Sehring, NORDAKADEMIE, Germany

sehring@nordakademie.de

2

Hans-Werner Sehring

Working as solution architect, software
architect, product owner, and many other
roles in commercial and scientific
projects

Software Engineering

Working in the directions of domain
modeling, software architecture, and
model-driven software engineering

Interested in modeling layers

(Meta) Modeling

In both science and industry working on
digital communication that is based on
digital media

One focus: content management systems

Content Management

Professor for Software Engineering

Currently teaching courses on

● Software engineering

● Programming (languages)

● Theoretical computer science

keynote speaker

Teaching

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

3

17 Apr 2024

Model-driven Software Engineering (MDSE) has obvious advantages, most notably

• traceability

• increase of software quality (w.r.t. modeled properties)

• automation (assuming that programming cost exceeds modeling cost)

In practice, an important class of systems is built in creative software development processes

These do not integrate well with MDSE

• subjective decisions: from goals to requirements to software specification

• outside-in perspective: user-centric research, feeback in incremental development, user acceptance tests

• media mismatch: from user interface design to frontend code

Current research interest: how to integrate these two contradictory kinds of software construction

Introduction (1)

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

4

17 Apr 2024

Recent interest? No! Problem exists since the 1990s (personal view)

• advent of the WWW

• professions like communication designers, …, UX designers

Perhaps much longer

Creative process made some progress since then

user-centric design, UX design, design sprint

Software development also, but: mainly optimization, scaling, and increase in quality

Claim: software development does not adapt to that situation, in particular MDSE

Additionally, there seem to be other points were simple MDSE falls short,

leading to the idea of holistic Model-Supported Software Creation

Introduction (2)

5

17 Apr 2024

Agenda

01 02

03 04

05

Previous and Ongoing

Work

Creative Software

Development

Conclusion

Model-Driven

Software Engineering

Towards Holistic

Model-Supported

Software Creation

6

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

Previous and
Ongoing Work

Section 1

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

7

17 Apr 2024

Starting Point: Previous Research

Content Personalization

To express scientific work that is

based on subjective views, e.g., in

the humanities, a system for

knowledge representation using

(digitial) media was studied:

Concept-Oriented Content

Management (COCoMa)

Software generation and

evolution-friendly software

architecture where studied in

support of the vast personalization

requirements of COCoMa

Meta (Meta) Modeling

The Minimalistic Meta Modeling

Language (M L³) was originally

intended as a textual language for

MDSE

It turned out to be applicable in

other areas as well, for instance,

for content management tasks

UI Specification and Generation

Work in generic UIs and in UI

generation provides insights into

working with visual prototypes

Additionally, there is experience from a
variety of commercial software projects in
the digital omnichannel domain

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

8

(Personalized) Content for Entity Description: COCoMa

Type : image/jpeg
Size : 491x624
Resolution : 260dpi

Emperor

Strength

Hannibal

Regent

Collaborative Tagging
Semantic Web, ontologies
Epistemic structures

sits on
represen-
ted as

Equestrian

Horse

Meta / description data
Type : Equestrian Image
Size : 100cm x 50cm
Medium : Oil on canvas

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

9

A Multi-Domain Model in COCoMa
model ArtHistory
from Documents import Document
class ArtHistoryDocument refines Document{
 content scan : byte[]
 concept
 relationship placement:Library
}

model Biography
class Person

model CivilLaw
from Documents import Document
from Temporal import Date
class PersonalRightsProtection refines Bill {
 content paragraphs : LegalText*
 concept characteristic restrictionPeriod : Years
 relationship protectedDocument : Document
 constraint protectedDocument.author.deathDate
 + restrictionPeriod <= create Date
}

model Documents
from Biography import Person
class Document {
 concept
 relationship author:Person
}

model Temporal
class Date

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

10

17 Apr 2024

COCoMa systems consist of components

• one component for each domain model

• cooperation for domain combinations

• integration to model revisions and to achieve personalization

Logical COCoMa Architecture: Components

o
rg

an
iz

at
io

n
 s

tr
u

ct
u

re

application structure

c
c

c
c1

c
c2

c
b1

c
b0

c
b2

c
d1

c
d11

c
d12

c
d2

c
d21

c
d0

c
aintegration

cooperation

componentc i

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

11

17 Apr 2024

Modules implement components

Reconfigurability at runtime

for dynamics through:

• Separation of Concerns
by module kinds
with distinguished
functionality

• uniform module API

• statelessness of modules

COCoMa Systems Implementation: Modules

m 1a m 1bm 11 m 12

m 1a m 1b

m 21

application structure

m 1a m 1b

m 11 m 12

m1 m 0 m 1

m 1

c c

c c1 c c2

c b0 c b1

m 2a

m 2

c b2c a

m 11 m 12

c d11 c d12 c d21

m 0 m 1

c d0

m 2a

m 2

c d2c d1

implemen-
tation

integration cooperationcomponentk i communication implementationmodulem i

o
rg

an
iz

at
io

n
 s

tr
u

ct
u

re

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

12

17 Apr 2024

The Minimalistic Meta Modeling Language (M L³) will be presented in more detail later

Key features:

● Meta is relative; one language spanning from meta (meta) modeling to instance descriptions

● Puristic syntax, small (minimal?) set of built-in features, simple semantics

● Variants and contexts as the primary idioms

● Dynamic evaluation

● Wide range of application scenarios; particularly interesting

● Software modeling

● Content modeling

The Minimalistic Meta Modeling Language (M3L)

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

13

17 Apr 2024

M L Example: Definition of a Programming Language³

Definition of a conditional statement

Boolean

True is a Boolean

False is a Boolean

Statement

PrintStatement { Text is a String }

IfThenElse is a Statement {

 Condition is a Boolean

 IfStatement is a Statement

 ElseStatement is a Statement

}

IfTrue is an IfThenElseStatement {

 True is the Condition

} |= TrueStatement

IfFalse is an IfThenElseStatement {

 False is the Condition

} |= ElseStatement

Application in a program

SomeCondition is a ComputeSomeBoolean { … }

Conditional1 is an IfThenElse {

 SomeCondition is the Condition

 PrintStatement is the IfStatement {

 "It's true" is the Text

 }

 PrintStatement is the ElseStatement {

 "It's false" is the Text

 }

}

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

14

17 Apr 2024

Syntactic Rules for External Representations

The syntactic rules for external representations

serve as

● templates to print out concepts

● grammars to parse in concept representations

Example:

IfThenElse

|- if Condition

 then IfStatement

 else ElseStatement

Note: concepts are represented by their name by

default

By means of contextualization, different

representations can be defined on concepts

Java is a ProgrammingLanguage {

 IfThenElse |- if (Condition)

 IfStatement

 ElseStatement

}

Python is a ProgrammingLanguage {

 IfThenElse |- if Condition :

 Newline Indentation IfStatement

 else:

 NewLine Indentation ElseStatement
}

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

15

Models for Visualizations

Technologies

Layout

AWT

…

…

Application domain

WELObject

PISubject Work

Picture

Movie

SWTJavaDescription

HTML SwiXML

Technology
Components

Container

GUI Component

… Swing

Technology

… …

Implementations

Swing Container

javax.swing.JPanel

Visualization
Code

(CCM)
Compiler

Visualization
environment

Domain
expert

Java Container

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

16

Example: Rich Client for a Digital Library
Technologies

Layout

AWT

:Window

:SplitPane

:SplitPane :TreeView

:ListView
:Panel

:TextField
:ComboBox

:Panel
:Panel

Application domain

WELObject

PISubject

Work
title : String
state : {A,B,C}
comment : String

Picture

Movie

:TextArea

SwingJavaDescriptionLanguage
HTML

SwiXML

Technology

artist : Artist

Components

Container

GUI Component

Window SWT

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

17

Declarative Interaction Description

class WorkList refines ListView {
 concept ; "visualizedInstance" inherited
 relationship selected :Work
 relationship subjTree :PISubjectTree
 ; always show extent of selected PISubject
 constraint visualizedInstance=subjTree.selected.extent
 onviolation modify self {
 visualizedInstance := subjTree.selected.extent
 }
 ; clear selection if model changed
 constraint { selected } <= subjTree.selected.extent
 onviolation modify self { selected := na }
}
class PISubjectTree refines TreeView {
 concept relationship selected :PISubject
 …
}

18

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

Model-Driven
Software Engineering

Section 2

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

19

17 Apr 2024

Model-driven Software Engineering (MDSE) and

Model-driven Software Development (MDSD)

(we use these terms synonymously – some make a distinction)

aim at building software from a series of (formal) models, where these models are related to each other by

model transformations.

Goals are, among others,

● validity / possibility of validation by some degree of formalism

● automation by formal model transformation and code generation steps

● traceability (of artifacts) through comprehensible modeling steps

Outline

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

20

17 Apr 2024

The general theme of model transformations we consider

• Models on one stage are refined until the result of the corresponding phase suffices

• Models on a subsequent stage are created from models of previous stages

Model Refinement and Transformations

Model on stage n

Model on stage n+1

Model creation
Selection
Prioritization

Model refinement
Delta models

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

21

17 Apr 2024

Model-driven Software Engineering Techniques

Various approaches to model-driven software engineering exist, for example,

• Model-driven Architecture (MDA)

• Software Generation

• Domain-specific Languages (DSLs)

• Generic Software

• Theoretical/scientific Approaches

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

22

17 Apr 2024

Model-driven Architecture (MDA)

Early MDSE approach proposed by the Object Management

Group (OMG)

Models are created on (originally) three levels of abstraction

1. A Computation-Independent Model (CIM) from the

perspective of the subject domain

2. A Platform-Independent Model (PIM) as a first formal

model

3. Transformed into a Platform-Specific Model (PSM) used

to generate a working implementation

[V. Nagrath,
O. Morel, A. Malik,
N. Saad, and
F. Meriaudeau:
Dynamic electronic
institutions in agent
oriented cloud
robotic systems]

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

23

17 Apr 2024

Software Generation

The solution model is contained in code

Different approaches, for example,

● metaprogramming

● templates

● generative AI

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

24

17 Apr 2024

Software Generation – Metaprogramming

The solution model is contained in code

Different approaches, for example,

● metaprogramming

– Programs that write programs

– Previous work:

software generators for

COCoMa

● templates

● generative AI

Domain model (source)

CodeDDL

Intermediate model (parse tree)

API

model M
class A refines B {
 content …
 concept …
}
class B {
 content …
 concept …
}
…

… … … …

a:AssetClass b:AssetClass

m:Model

interface AbstractA { … }

interface A extends AbstractA { … }
create table ATab (
…
)

class AImpl
 implements A, …
{
 … select from ATab …
}

parse

abstract intf. for A
persistent intf. for A
…
factory for B

AbstractA
A
…
BFactory

class for A AImpl
class for B BImpl

table for A ATab
table for B BTab

generate

gen
era

te

generate

superClass

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

25

17 Apr 2024

Software Generation – Templates

The solution model is contained in code

Different approaches, for example,

● metaprogramming

● templates

– template provide a code skeleton that is

filled with actual statements or values

– a template is applied multiple times with

different parameters

● generative AI

Code templates can be found in various software tools.

Example:

[SAP Documentation, ABAP Development User Guide]

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

26

17 Apr 2024

Software Generation – Generative AI

The solution model is contained in code

Different approaches, for example,

● metaprogramming

● templates

● generative AI

– Fully automated generation, where

the functionality is described using

natural language

– Assisted programming, where

coding is done manually, an AI

completes and improves the code

Modeling is twofold

● Training AI: model of software out of existing solutions

● Generating software: the actual solution is described by

the expected behavior, formulated in natural language

Current state:

● Models cannot (fully) be checked

● Traceability is limited

[https://www.reddit.com/r/harrypotter/comments/zdcdom/i_used_chatgpt_ai_to_generate_a_harry_potter_text/]

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

27

17 Apr 2024

Domain-Specific Languages (DSLs)

Domain-Specific Languages (DSLs) built with language construction tools

Defined for a specific domain to provide linguistic means for typical problems

More abstract (concerning implementation) than programming languages

Trade-off:

● generality vs. specificity

● granularity of language expressions; how much code generation is built in?

Languages Metamodels – DSLs are built from domain models (though not always visible)≙

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

28

17 Apr 2024

Generic Software

Generic Software is not generated at all

One-size-fits-all solution, possibly configurable

In a sense, also generic software is created in a model-driven way

● A domain model was used during the development of the software

● Functionality should also have been modeled; only the requirements

● If the model is parameterized, then software is configurable (low code / no code development)

In how far models are made explicit

Traceability is not given / not applicable

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

29

17 Apr 2024

Theoretical/scientific Approaches

There are scientific mathematical approaches to software construction, for example,

Proofs

Basic idea:

If the correctness of a software with respect to the requirements can be proven,

and if the proof is constructive,

then the proof correctly creates the software

Category Theory

Using category theory, model refinements are expressed as morphisms, and a pushout adds model properties

to the next modeling stage

30

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

Creative Software
Development

Section 3

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

31

17 Apr 2024

Approaches based on formal models

and model transformations

Software engineering reality

(at least in some domains),

see modeling stages and artifacts:

MDSE in Practice

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

32

17 Apr 2024

Cases of Creative Software Development

Class of solutions whose development includes creative tasks that lead to non-formal, often visual artifacts:

● carried out by domain experts

● … using heterogeneous modeling artifacts: varying degrees of formalism, ambiguity, detail, etc. …

● … with a methodology or a tool: notation and representations matter ...

● … for communication with (non-technical) stakeholders

This happens in several project stages, not only software (engineering) related ones

Creative software development (no agreed name for this kind of software development)

One major creative activity is UX design (also no agreed term)

● requirements analysis, target group analysis

● domain modeling

● information architecture, conceptualization, …

● etc.

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

33

17 Apr 2024

Typical Architecture of Communication Infrastructure

Contemporary systems exhibit a fair amount of

complexity

Examples:

● Content management functionality is provided by a

CMS and a DAM

● User interactions consist of ratings, comments,

forums, and a support database, and they are

measured by web tracking

● CDP is built from campaign management, web

tracking, and CRM components

● Commerce functionality drive transactions, provide

data, etc.

A system of systems

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

34

17 Apr 2024

Fast-paced Change in Business Requirements

Digital business, in particular, has some particularly challenging implications, for example,

● Outside-in view: requirements dictated by customer expectations, competitors, technical possibilities

● Time-to-market

Time of relaunches is over (for quite a while)

● Base systems are introduced and sustainable

● Continuous improvement of interfaces, processes, …

● Instead: Deploy, Measure, Improve

Incremental development: traceability (as well as other features provided by MDSE) is key

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

35

Modeling Phases and Artifacts
Phase Order Discipline Artifact
Inception
/ Research

 Management Goals

↪ Management Inception

↪ Concept Requirements (inside-out)

Concept Research (outside-in)

Analysis ↪ Concept Personas

↪ Concept Customer journeys

↪ Technology Existing tools

Technology Information demand / data flows

Design Concept Information architectures (stationary web, mobile web, mobile app)

Graphics Wireframes (stationary web, mobile web, mobile app)

↪ Technology Solution architecture

Graphics UI design / style guide

Implementation ↪ Technology SW arch (if not agile)

Technology System arch (if not agile)

↪ Technology Code design

Technology Code

Concept Test cases

Technology Test scripts

Concept Documentation

Operations ↪ Technology Infrastructure

Technology Build and deploy scripts

Concept Training

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

36

17 Apr 2024

On top of the classical, coarse-grained development phases (inception, analysis, design, implementation,

operation), we see the following (modeling) stages that each have their own contributions

1. (Business) Goals: definition of a new state / an achievement / … that is aimed at

2.Subject domain model: an abstraction of the domain at hand, identification of a solution area

3.Requirements, conceptualization: a description of the (software) solution in application domain terms

4.Solution architecture: a first description of the software solution implementation

5.Software architecture(s): refined specifications of different components of the software solutions

6.Code: the actual implementation of the software solution

7.Systems architecture: a specification of the infrastructure for the operation of the software

8.Operations: the implementation of the infrastructure, operation and maintenance of the software

Modeling Stages

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

37

Artifacts in Creative Software Development

Creation stage Sample model entities on the stage

(Business) Goals KPIs

OKRs

Subject domain
model

Information architecture

Interaction design

Wireframes

Processes, data flows

Requirements,
Conceptualization

Solution hypothesis

Functional ~

Non-functional ~

Customer journeys

Touch points

Solution
architecture

Interfaces

High-level architecture

Functional mapping

Creation stage Sample model entities on the stage

Software
architecture(s)

Components

Communication between those components

Interfaces to the environment

Constraints of the resulting software system

Requirements met by the architecture

Rationale behind architecture decisions

Code Metaprograms

Input for software generators

Domain-specific language expressions

Systems
architecture

Infrastructure definition (IaC)

Automated deployments (CI/CD)

Operations Service level agreement

Monitoring

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

38

Sample Development Artifacts and Formalisms

38

Phase Order Discipline Artifact Formal(izable) model
Inception
/ Research

 Management Goals (X)

↪ Management Inception —

↪ Concept Requirements (inside-out) X

Concept Research (outside-in) —

Analysis ↪ Concept Personas —

↪ Concept Customer journeys —

↪ Technology Existing tools X

Technology Information demand / data flows X

Design Concept Information architectures (stationary web, mobile web, mobile app) —

Graphics Wireframes (stationary web, mobile web, mobile app) —

↪ Technology Solution architecture —

Graphics UI design / style guide (X)

Implementation ↪ Technology SW arch (if not agile) X

Technology System arch (if not agile) X

↪ Technology Code design X

Technology Code X

Concept Test cases X

Technology Test scripts X

Concept Documentation (X)

Operations ↪ Technology Infrastructure X

Technology Build and deploy scripts X

Concept Training —

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

39

17 Apr 2024

Support for Informal Processes and Artifacts

Given various process steps and artifacts that are

• not formal

• ambiguous

• not producible by model transformations

• etc.

We cannot have MDSE.

Still, we want …

• support in managing system (of systems) complexity

– support in managing (modeling) artifacts

– checks on models

• quick reactions to changing requirements

– deriving software from specifications

– traceability

• etc.

We want the benefits of MDSE.

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

40

Creative Output Leads to Formal Specifications

40

Store
Sales

Representative
Fair DisplayWebsiteApp

Sales Support System Digital Signage SystemPOS Systems

CMS Commerce Platform

Webserver
Tracker

Analytics DAM PIM ERP CRM

CDP DMPCIAM

Customer Journey 1

Customer Journey 2

Data Flow

41

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

Towards Holistic Model-
Supported Software Creation

Section 4

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

42

17 Apr 2024

Holistic Model-Supported Software Creation (MSSC)

Holistic MDSE that covers all

project stages

For example: project success is

measured based on business

goals, not requirements

Model-supported SE

acknowledges the fact that we

cannot purely rely on formal

models and model transformations

In the absence of formal models,

these cannot be the overarching

communication base

Model-supported Software

Creation acknowledges the

creative work that is part of the

process

There is creative work on artifacts

that cannot adequately be

formalized by model

transformations

For those software projects with imprecise, creative development steps, we need …

Need to model activities and

artifacts outside SW

production

Models can describe the (final)

informal artifacts

But: model transformations to

describe development steps

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

43

17 Apr 2024

MSSC Investigations

We currently investigate two kinds of model support for software creation

1. description of (informal) artifacts by (formal) models

2.generation of artifacts from models

3.generation of prototypes from models

We also take first steps toward software generation from such models

44

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

 Descriptive Model
Transformations

Section 4.1

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

45

17 Apr 2024

We experiment with models that both represent

• models that specify the software to be built and

• artifacts that describe the software

and that allow expressing

• model transformations within one stage and

• model transformations to enter a subsequent modeling stage

Question: When is work on an artifact isomorphic to a model transformation?

First Experiments

17 Apr 2024Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

46

Examples of Description Models for Informal Artifacts
CIM

Personas

Persona A Persona B

Customer Journey 1

Touchpoint 1.1 Touchpoint 1.2

(if we use MDA terminology here)

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

47

17 Apr 2024

Typical phases of a software creation process and model transformations connecting them.

Model Refinement and Transformations

Creation stage Sample model entities on the stage

(Business) Goals KPIs

OKRs

Subject domain
model

Information architecture

Interaction design

Wireframes

Processes, data flows

Requirements,
Conceptualization

Solution hypothesis

Functional ~

Non-functional ~

Customer journeys

Touch points

Solution
architecture

Interfaces

High-level architecture

Functional mapping

Software
architecture(s)

Components

Communication between those components

Interfaces to the environment

Constraints of the resulting software system

Requirements met by the architecture

Rationale behind architecture decisions

Code Metaprograms

Input for software generators

Domain-specific language expressions

Systems
architecture

Infrastructure definition (IaC)

Automated deployments (CI/CD)

Operations Service level agreement

Monitoring

from

Business Goals

to

Domain Model

and

Requirements

from

Requirements

and

Domain Model

to

Solution Architecture

from

Solution Architecture

to

Software Architecture

from

Software Architecture

to

Code

from

Requirements

and

Solution Architecture

and

Software Architecture

to

Systems Architecture

from

Systems Architecture

to

Operations

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

48

17 Apr 2024

M L concepts represent ³ different modeling components

• Topmost concepts represent modeling stages and models

• They contain concepts that represent domain entities

• They relate models and model items to each other

These contained concepts

• may be stand-alone concepts as model items for domain entities or

• may represent artifacts that represent such domain entities

Model transformations trace the evolution of artifacts

created during the course of software creation

Model transformations as considered here can be expressed by the M L³
The aim is to design them in such a way that traceability is achieved

An MSSC Approach with the M L³

Stage

Model

Defining
Model Item

Descriptive
Model Item

Artifact

Model Item

49

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

 Artifact Creation
from Models

Section 4.2

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

50

17 Apr 2024

Content Management Systems (CMSs) offer a range of functionality to incorporate

creation/ingest and editing of content,

quality assurance processes as well as

the creation and distribution of

digital documents

This means that content is created

in a model-driven fashion

In the past, we already applied

the M L for such tasks³

Now we can reuse that knowledge to create artifacts that describe software from models of the software

Content Management (1)

CMSExternal
Content
Sources

Editorial
Board

Internal
Content
Sources

Managed

Content

Quality

Assured

Content

Document

Production

Document

Delivery

Channel

Channel

Channel

Channel

Channel

Search

Ingest Approval Publication Shipping Delivery

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

51

17 Apr 2024

CMSs separate content, structure, and layout of documents

Content items have a lifecycle

Content Management (2)

CMS

DAM

Created Content
Object

(ex.: text)
Rendered
Document

Content Created
from Asset

(ex.: image)

Approved
Content Object

(ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem
ipsum …

Approved
Asset

(ex.: image)

Created Asset
(ex.: image)

Referenced
Asset

(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved
Content/Asset
(ex.: image)

Navigation Model

Content Model

Layout Hints

Layout Model Channel

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

52

17 Apr 2024

Artifacts are created from content according to suitable models

Using the same meta model for both software and content models

(plus navigation models, layout models, …) allows these combinations

Software Engineering Artifacts Generation

Stage

Content

Layout
Rule

Artifact

Text Image Compound

Media Format

Media Element

Artifact Description

Model

Model Item

for example, HTML elements

for example, HTML

for example, requirements specification

53

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

 Prototype Generation
from Models

Section 4.3

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

54

17 Apr 2024

Existing code generation facilities can be used to generate prototypes

Still, we employ models for simple prototypes like click dummies

to make generation available to domain experts

Interactive Software Engineering Artifacts

Stage

UI Element

Prototype

Visual Element Behavioral ElementPanel

UI Technology

UI Element
Implementation

Prototype
Specification

Model

Model Item

55

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE 17 Apr 2024

Conclusion

Section 5

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

56

17 Apr 2024

(Software) Projects consist of more activities than the software production itself – we need holistic processes

There is a class of software projects that includes creative activities that are carried out using adequate

notations and specific tools that lead to the creation of unstructured/informal artifacts

For such projects, a model-driven approach that is based on formal models is not possible

To benefit from the advantages of model-driven development, like traceability, efficiency, and others,

models shall at least support the development process

We currently investigate two approaches

1)Models that have elements that describe creative artifacts

2)The combination of software and content models to generate creative artifacts

First experiments using the M L³ for both approaches show that both approaches can be combined in the

same (meta) framework

Summary

Towards Unified Formal and Creative Software Development – Hans-Werner Sehring – NORDAKADEMIE

57

17 Apr 2024

Many questions are still open; just to name a few

The references to artifacts need to be elaborated; we can build on previous work at this point

• fragments of artifacts

• related artifacts

Parsing digital artifacts to allow manual changes in the generation case (approach 2)

• round-trip modeling

• finally convergence of approach 1 and approach 2?

Investigate the utilization of generated models as checklists that describe the required artifacts

In general, modeling with the M L in MDSE³ will be investigated further, for example, reasoning capabilities

Outlook

NORDAKADEMIE gAG Hochschule der Wirtschaft

Köllner Chaussee 11 · 25337 Elmshorn · Tel.: +49 (0) 4121 4090-0 · E-Mail: info@nordakademie.de · Web: www.nordakademie.de

	Titel der Präsentation
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	M³L Example: Definition of a Programming Language
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	1. Model-driven Software Engineering
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Sample Development Artifacts and Formalizability
	Support for Informal Processes and Artifacts
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	5. An MSSC Approach with the M³L
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	6. Summary and Outlook
	Folie 57
	Folie 58

