
A Note on a Syntactical Measure of the

Complexity of Programs

Emanuele Covino

Dipartimento di Informatica, Universitá degli Studi di Bari, Italy

emanuele.covino@uniba.it

A short CV

Emanuele Covino is an Assistant professor at the

Dipartimento di Informatica, Universitá degli Studi di Bari, Italy.

Research: Implicit computational complexity, Mobile networks,

Template metaprogramming and partial evaluation.

Teaching: Foundations of computer science, Computability and complexity,

Programming languages, Web programming,

Algorithm and data structures.

Projects: Erasmus+ Computing Competences: ”Innovative learning approach for

non-IT students” (agreement n° 2018-1-PL01-KA203-051143);

Horizon Europe Seeds: ”Freedom of speech, new technologies, and

consensus formation”;

”Computational complexity of Generic programming”.

1

Table of contents

1. In our paper

2. Implicit computational complexity - ICC

3. Measures of programs

4. A note on the nature of programs - a new measure

2

In our paper

...

� a programming language operating on stacks

� a syntactical measure σ

� a natural number σ(P) assigned to each program P

� σ considers how loops defined over subprograms influences the

complexity of the program

- σ(P) = n ⇒ function computed by P has running time in En+2 (the

n + 2-th Grzegorczyk class)

- σ(P) = 0 ⇒ function computed by P has running time in

polynomial-time

3

Implicit computational

complexity - ICC

ICC

� computability theory: what can and what cannot be computed by

an algorithm, without any specific constraint on the behavior of the

machine

� complexity theory: classification of computable functions based on

the amount of resources used by a machine

Turing machine ⊕ time/space

� implicit computational complexity: classes captured by imposing

linguistic constraints on how algorithms are written

- languages instead of computational models

- what kind of constraints?

- is there a common principle to each constraints?

4

1964 - Alan Cobham

The intrinsic computational difficulty of functions

”is it harder to multiply than to add?”

� independence from computational model and algorithm

� meta-mathematical analysis: proof systems, structure of proofs, and

adequacy of systems

� meta-numerical analysis: computational systems and categories of

models

� computational complexity ⇔ classes of functions

. . . but which classes of functions??

5

1953 - A. Grzegorczyk

Some classes of recursive functions

. . . the candidate could be the Grzegorczyk hierarchy!

� the k-th iterate of f is f 0(x) = x and f k+1(x) = f (f k(x))

� the principal functions E1,E2,E3, . . . are

E1(x) = x2 + 2 and En+2(x) = E x
n+1(2) (the x-th iterate of En+1)

� f is defined by bounded recursion from g , h, and b if for all x⃗ , y{
f (x⃗ , 0) = g(x⃗)

f (x⃗ , y) = h(x⃗ , y , f (x⃗)) and f (x⃗ , y) ≤ b(x⃗ , y)

� the n-th Grzegorczyk class En is the least class of functions with

functions zero, successor, projections, maximum and En−1

closed under composition and bounded recursion

6

a few interesting facts

� E0(x) = x + x

� E1(x) = x2

� E2(x) = xx

� E3(x) = xx...
x

(x times)

� E4(x) = xx...
x

(xx...
x

times)

� . . .

� E0 ⊆ E1 ⊆ E2 . . .

�
⋃

i E
i = PR the primitive

recursive functions

f ∈ En

⇔
there exists a TM that computes f within space in En

there exists a TM that computes f within time in En

7

the first functional characterization of Polytime

the class of functions with

� zero, successor, projections, and 2|x||y |

and closed under

� composition f (x⃗ , y) = h(g(x⃗), . . . , g(x⃗))

� bounded recursion on notation{
f (x⃗ , 0) = g(x⃗)

f (x⃗ , yi) = hi (x⃗ , y , f (x⃗)) and f (x⃗ , y) ≤ b(x⃗ , y)

is the class of all functions computable within polynomial time.

The bounded recursion on notation is indecidable.

8

1988 - Harold Simmons

The realm of primitive recursion

{
f (0, x⃗) = g(x⃗)

f (r + 1, x⃗) = H(r , x⃗ ; f (r , ·))

� note the ”;” in H: it divides the variables in normal and dormant

� H is a functional; Simmons finds the correct class of functionals in

which H is defined, in order to capture Polytime

� f is defined by predicative (unbounded) recursion

What is a predicative definition?

9

a brief digression: how to define sum and product

{
⊕(0, x) = x

⊕(y + 1, x) = ⊕(y , x) + 1

{
⊗(0, a) = 0

⊗(b + 1, a) = ⊕(a,⊗(b, a))

� for instance, ⊗(3, 5) = ⊕(5,⊗(2, 5))

� we can compute the ⊕(5, ·) part, using the previous definition of ⊕,

without knowing the value of the second variable

� ⊕(5, ·) = ⊕(4, ·) + 1 = ⊕(3, ·) + 1 + 1 = . . .

10

product can be defined differently

{
⊕(0, x) = x

⊕(y + 1, x) = ⊕(y , x) + 1

{
⊗(0, a) = 0

⊗(b + 1, a) = ⊕(a,⊗(b, a))

{
⊗(0, a) = 0

⊗(b + 1, a) = ⊕(⊗(b, a), a)

� for instance, ⊗(3, 5) = ⊕(⊗(2, 5), 5)

� to compute ⊕(⊗(2, 5), 5), we need the value of ⊗(2, 5)

� we are using the function ⊗ while defining the same function

11

predicative Vs impredicative definitions

� the first definition of ⊗ is predicative

� the second one is not: we define ⊗ using ⊗

We are not surprised that in Simmons the first definition of ⊗ is legit, the

second one is not.

Note that we cannot define the exponent ↑ (x , 2) = 2x in a predicative

way {
↑ (0, 2) = 1

⊗(y + 1, 2) = ⊗(↑ (y , 2), ↑ (y , 2))

12

1992 - Bellantoni & Cook

A new recursion-theoretic characterization

of the polytime functions

Can we use the tools provided by Simmons (normal and dormant

variables) to capture Polytime?

Can we give a predicative characterization, avoiding the bounded

recursion?

13

1992 - Bellantoni & Cook

A new recursion-theoretic characterization

of the polytime functions

f (x , . . .︸ ︷︷ ︸
normal

; y , . . .︸ ︷︷ ︸
safe

)

� initial functions: 0, s(; a), p(; a), if (; a, b, c)

� safe composition: f (x⃗ ; a⃗) = h(
−−−→
r(x⃗ ;);

−−−−→
t(x⃗ ; a⃗))

� safe recursion on notation:{
f (0, x⃗ ; a⃗) = g(x⃗ ; a⃗)

f (yi , x⃗ ; a⃗) = hi (y , x⃗ ; a⃗, f (y , x⃗ ; a⃗))

Polytime is the closure of the initial functions under safe composition and

safe recursion on notatios, without safe inputs

14

� it’s impossible to move variables from the safe zone to the normal

one (in the definition of composition, r has no safe variables)

� hence, we cannot use the recursive call f (y , x⃗ ; a⃗) as recursive

variable of another function h, also defined by recursion

We can rewrite ⊕ and ⊗ using the safe recursion; this is the only way

these functions can be defined within this framework{
⊕(0; x) = x

⊕(y + 1; x) = s(;⊕(y , x))

{
⊗(0, x ;) = 0

⊗(y + 1, x ;) = ⊕(x ;⊗(y , x ;))

15

� We have a predicative characterization:

initial func’s+safe recursion+safe composition = Polytime

� What happens if we violate the rule of not moving variables from

safe to normal zone?

initial func’s+safe recursion+safe composition+k violations = Ek

� k violations ⇒ the k-th Grzegorczyk class !!

16

Critique to this approach to complexity

Even if the safe recursion can capture Polytime, it does it via the Turing

model, inefficiently

For instance

� simple sorting (polynomial) cannot be described by the safe recursion

� simple functions (the minimum) are computed with a higher

complexity

17

Martin Hofmann

The strength of non-size-increasing computation

insert(x, nil) = cons(x,nil)

insert(x,cons(y,l)) = if x≤y then cons(x,cons(y,l)) else cons(x,insert(x,l))

sort(nil) = nil

sort(cons(x,l)) = insert(x,sort(l))

This algorithm is not defined by safe recursion

18

Loic Colson

Intensional aspects of functional systems

The straightforward algorithm for the minimun between two numbers is:

min(0,y) = 0

min(s(x),0) = 0

min(s(x),s(y)) = s(min(x,y))

the computation time of min is O(min(x,y)).

Defining min as a primitive recursion:

min’(x,y) = if(sub(x,y),y,x)

the computation time of min’ is O(y).

But how can I know the minimum between two numbers, if I’m still

defining the minimum function?

19

Measures of programs

1999 - Neil Jones

LOGSPACE and PTIME characterized by programming lan-

guages

“. . . what is the effect of the programming style we employ

(functional, imperative, ...)

on the efficiency of the programs we can possibly write?”

20

Kristiansen & Niggl

On the computational complexity of imperative programming

languages

An imperative programming language operating on stacks

push(a,X)

pop(X)

nil(X)

sequencing - P;Q

if-then-else - if top(X)≡a then [P]

iteration (call by value) - foreach X [P])

21

three examples of stack programs

P1:= foreach X[. . . foreach X [push (a,Y)]]

� if v is stored in X before P1 is executed, then Y holds a|v| after the

execution of P1

� the depth of loop-nesting is a necessary condition for high computational

complexity, but it is not sufficient

22

three examples of stack programs

P2:= nil(Y); push(a,Y); nil(Z); push(a,Z);

foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

P3:= nil(Y); push(a,Y); nil(Z);

foreach X [

foreach Y [push(a,Z); push(a,Z); push(a,Y)]]

� both P2 and P3 have nesting depth 2, but

� if w is stored in X, then Z holds a2
|w|

after P2 is executed

� if w is stored in X, then Z holds a|w|(|w|+1) after P3 is executed.

P3 runs in polynomial time, whereas P2 has exponential running time.

23

increasing circles

What causes the exponential growth in P2?

P2:= nil(Y); push(a,Y); nil(Z); push(a,Z);

foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

� there is a circle inside the outermost loop in P2

� first Y updates Z (via push(a,Z))

� then Z updates Y

� in contrast, there is no such circle in P3 and P3

P1 and P3 both have µ measure 0; P2 has µ measure 1

Programs with two levels of nesting circles will have µ measure 2.

24

a syntactical measure of the complexity of imperative programs

The µ-measure of a program operating on stacks is

µ(push(a,X))=0

µ(pop(X))=0

µ(nil(X))=0

µ(P;Q)=max(µ(P);µ(Q)))

µ(if top(X)≡a then [P])=µ(P)

µ(foreach X [P])= µ(P)+1 if there is a circle

µ(foreach X [P])= µ(P) otherwise

� programs with µ measure n can be simulated by a TM with time

complexity in En+2

� TM with time complexity in En+2 can be simulated by programs of

measure n

25

A note on the nature of

programs - a new measure

honest and dishonest programs

� honestly feasible programs:

each sub-program can be computed by a polynomial TM

� dishonestly feasible programs:

- they compute a polynomial function, in more than polynomial time

- they run in polynomial time, but some sub-program (when run

separately), runs in more than polynomial time

Two lines of research

� restrict the stack program language (to capture only honest

programs)

� improve the measure (to capture the highest number of program,

even the dishonest)

26

Covino

A note on a syntactical measure of the complexity of programs

Fact: is there is a nested circle, the µ measure is increased

Questions: what happens when ...

� there are nested instructions that do not change the overall space?

� there are nested subprograms that do not change the overall space?

� there are nested circles that do not change the overall space?

Answer:

� there is no growth in the complexity of the computed function

� but the µ measure does not detect it!

27

introducing a new measure σ

to detect the previous situation we separate the circles in

� increasing, that increase the dimensions of the stacks involved in

the circle itself

� not-increasing, that leave unchanged the total dimensions of the

stacks

If a circle is not increasing, the σ measure is not increased

28

σ-measure for a single variable (1)

Let P be a stack program and Y a stack;

imp(Y) denotes an imperative pop(Y), push(a,Y), or nil(Y);

mod(X̄) denotes a modifier, i.e., a sequence of imp operating on variables in X̄;

σY(P) is defined as follow:

1. σY(mod(X̄)) := sg(
∑

σ̂Y(imp(Y))), for each imp(Y) in mod(X̄),

where

σ̂Y(push(a,Y)) := 1;

σ̂Y(pop(Y)) := −1;

σ̂Y(nil(Y)) := −∞;

σ̂Y(imp(X)) := 0, with Y ̸=X;

2. σY(if top Z ≡a[P]) := σY(P);

3. σY(P1;P2) := max(σY(P1), σY(P2));

29

σ-measure for a single variable (2)

4 � σY(foreach X [Q]) := σY(Q) + 1, if there exists a circle in Q, and a

subprogram Qi s.t.

(a) Y and Qi are involved in the circle;

(b) σY(Q) = σY(Qi);

(c) the circle is increasing;

� σY(foreach X [Q]) := σY(Q), otherwise

a circle is not increasing if, denoted with Q1,Q2,. . . ,Ql and with Z1,Z2,. . . ,Zl

the sequences of subprograms and, respectively, of variables involved in the

circle, we have that σZi
(Qj) = 0, for each i := 1 . . . l and j := 1 . . . l .

If the previous condition doesn’t hold, we say that the circle is increasing.

30

σ-measure for a single variable (3)

Note that the ”otherwise” case in (4) can be split in three different cases

1. Y is not involved in any circle

2. Y and Qi are involved in a circle in Q, but σY(Qi) ≤ σY(Q)

(there is a blow-up in the complexity of Y in Qi , but this growth is lower

than the growth of Y in a different subprogram of Q)

3. Y is involved in some circles, but they are not increasing

(each variable Zi involved in each circle doesn’t produce a growth in the

complexity of the subprograms Qj involved in the same circle)

In these cases, the space used by foreach X [Q] is the same used by Q

(one can iterate a not increasing program without leading an harmful growth);

σ must remain unchanged!

σ is increased only when an increasing top circle occurs and at least one of the

variables involved in that circle causes a growth in the space complexity of the

related subprogram.

31

σ-measure for all variables

σ(P) is defined as follows:

σ(P) := σ̃(P)−̇1 (the cut-off subtraction), and

1. σ̃(mod(X̄)) := 0

2. σ̃(if top Z ≡a [Q]) := max(σY(if top Z ≡a [Q])), for all Y in P;

3. σ̃(P1;P2) := max(σY(P1;P2)), for all Y in P;

4. σ̃(foreach X [Q]) := max(σY(foreach X [Q])), for all Y in P.

32

σ is better than µ for all dishonest programs

� σ ≤ µ for all dishonest programs

� this measure considers only loops in which subprograms with a

size-increasing effect are iterated

� programs with µ measure n can be simulated by a TM with time

complexity in En+2

� TM with time complexity in En+2 can be simulated by programs of

measure n

33

	In our paper
	Implicit computational complexity - ICC
	Measures of programs
	A note on the nature of programs - a new measure

