

A Note on a Syntactical Measure of the Complexity of Programs

Emanuele Covino

Dipartimento di Informatica, Universitá degli Studi di Bari, Italy emanuele.covino@uniba.it

A short CV

Emanuele Covino is an Assistant professor at the Dipartimento di Informatica, Universitá degli Studi di Bari, Italy.

Research: Implicit computational complexity, Mobile networks, Template metaprogramming and partial evaluation.

Teaching: Foundations of computer science, Computability and complexity, Programming languages, Web programming, Algorithm and data structures.

Projects: Erasmus+ Computing Competences: "Innovative learning approach for non-IT students" (agreement n° 2018-1-PL01-KA203-051143);
Horizon Europe Seeds: "Freedom of speech, new technologies, and consensus formation";
"Computational complexity of Generic programming".

Table of contents

1. In our paper
2. Implicit computational complexity - ICC
3. Measures of programs
4. A note on the nature of programs - a new measure

In our paper

- a programming language operating on stacks
- a syntactical measure σ
- a natural number $\sigma(\mathrm{P})$ assigned to each program P
- σ considers how loops defined over subprograms influences the complexity of the program
- $\sigma(\mathrm{P})=n \Rightarrow$ function computed by P has running time in \mathcal{E}^{n+2} (the $n+2$-th Grzegorczyk class)
- $\sigma(\mathrm{P})=0 \Rightarrow$ function computed by P has running time in polynomial-time

Implicit computational complexity - ICC

- computability theory: what can and what cannot be computed by an algorithm, without any specific constraint on the behavior of the machine
- complexity theory: classification of computable functions based on the amount of resources used by a machine Turing machine \oplus time/space
- implicit computational complexity: classes captured by imposing linguistic constraints on how algorithms are written
- languages instead of computational models
- what kind of constraints?
- is there a common principle to each constraints?

1964 - Alan Cobham

The intrinsic computational difficulty of functions

"is it harder to multiply than to add?"

- independence from computational model and algorithm
- meta-mathematical analysis: proof systems, structure of proofs, and adequacy of systems
- meta-numerical analysis: computational systems and categories of models
- computational complexity \Leftrightarrow classes of functions
... but which classes of functions??

1953 - A. Grzegorczyk

Some classes of recursive functions

... the candidate could be the Grzegorczyk hierarchy!

- the k-th iterate of f is $f^{0}(x)=x$ and $f^{k+1}(x)=f\left(f^{k}(x)\right)$
- the principal functions $E_{1}, E_{2}, E_{3}, \ldots$ are

$$
E_{1}(x)=x^{2}+2 \text { and } E_{n+2}(x)=E_{n+1}^{x}(2)\left(\text { the } x \text {-th iterate of } E_{n+1}\right)
$$

- f is defined by bounded recursion from g, h, and b if for all \vec{x}, y

$$
\left\{\begin{array}{l}
f(\vec{x}, 0)=g(\vec{x}) \\
f(\vec{x}, y)=h(\vec{x}, y, f(\vec{x})) \text { and } f(\vec{x}, y) \leq b(\vec{x}, y)
\end{array}\right.
$$

- the n-th Grzegorczyk class \mathcal{E}^{n} is the least class of functions with functions zero, successor, projections, maximum and E_{n-1} closed under composition and bounded recursion

a few interesting facts

- $E_{0}(x)=x+x$
- $E_{1}(x)=x^{2}$
- $E_{2}(x)=x^{x}$
- $E_{3}(x)=x^{x^{\cdots}{ }^{x}}$ (x times)
- $\mathcal{E}^{0} \subseteq \mathcal{E}^{1} \subseteq \mathcal{E}^{2} \ldots$
- $\bigcup_{i} \mathcal{E}^{i}=\mathcal{P} R$ the primitive recursive functions
- $E_{4}(x)=x^{x \cdots \omega^{x}}\left(x^{x \cdots \omega^{x}}\right.$ times $)$

$$
f \in \mathcal{E}^{n}
$$

there exists a TM that computes f within space in \mathcal{E}^{n} there exists a TM that computes f within time in \mathcal{E}^{n}

the first functional characterization of Polytime

the class of functions with

- zero, successor, projections, and $2^{|x||y|}$
and closed under
- composition $f(\vec{x}, y)=h(g(\vec{x}), \ldots, g(\vec{x}))$
- bounded recursion on notation

$$
\left\{\begin{array}{l}
f(\vec{x}, 0)=g(\vec{x}) \\
f(\vec{x}, y i)=h_{i}(\vec{x}, y, f(\vec{x})) \text { and } f(\vec{x}, y) \leq b(\vec{x}, y)
\end{array}\right.
$$

is the class of all functions computable within polynomial time.
The bounded recursion on notation is indecidable.

1988 - Harold Simmons

The realm of primitive recursion

$$
\left\{\begin{array}{l}
f(0, \vec{x})=g(\vec{x}) \\
f(r+1, \vec{x})=H(r, \vec{x} ; f(r, \cdot))
\end{array}\right.
$$

- note the ";" in H: it divides the variables in normal and dormant
- H is a functional; Simmons finds the correct class of functionals in which H is defined, in order to capture Polytime
- f is defined by predicative (unbounded) recursion

What is a predicative definition?

a brief digression: how to define sum and product

$$
\left\{\begin{array} { l }
{ \oplus (0 , x) = x } \\
{ \oplus (y + 1 , x) = \oplus (y , x) + 1 }
\end{array} \quad \left\{\begin{array}{l}
\otimes(0, a)=0 \\
\otimes(b+1, a)=\oplus(a, \otimes(b, a))
\end{array}\right.\right.
$$

- for instance, $\otimes(3,5)=\oplus(5, \otimes(2,5))$
- we can compute the $\oplus(5, \cdot)$ part, using the previous definition of \oplus, without knowing the value of the second variable
- $\oplus(5, \cdot)=\oplus(4, \cdot)+1=\oplus(3, \cdot)+1+1=\ldots$

product can be defined differently

$$
\begin{gathered}
\left\{\begin{array}{l}
\oplus(0, x)=x \\
\oplus(y+1, x)=\oplus(y, x)+1
\end{array}\right. \\
\left\{\begin{array} { l }
{ \otimes (0 , a) = 0 } \\
{ \otimes (b + 1 , a) = \oplus (a , \otimes (b , a)) }
\end{array} \quad \left\{\begin{array}{l}
\otimes(0, a)=0 \\
\otimes(b+1, a)=\oplus(\otimes(b, a), a)
\end{array}\right.\right.
\end{gathered}
$$

- for instance, $\otimes(3,5)=\oplus(\otimes(2,5), 5)$
- to compute $\oplus(\otimes(2,5), 5)$, we need the value of $\otimes(2,5)$
- we are using the function \otimes while defining the same function

predicative Vs impredicative definitions

- the first definition of \otimes is predicative
- the second one is not: we define \otimes using \otimes

We are not surprised that in Simmons the first definition of \otimes is legit, the second one is not.

Note that we cannot define the exponent $\uparrow(x, 2)=2^{x}$ in a predicative way

$$
\left\{\begin{array}{l}
\uparrow(0,2)=1 \\
\otimes(y+1,2)=\otimes(\uparrow(y, 2), \uparrow(y, 2))
\end{array}\right.
$$

1992 - Bellantoni \& Cook

A new recursion-theoretic characterization of the polytime functions

Can we use the tools provided by Simmons (normal and dormant variables) to capture Polytime?

Can we give a predicative characterization, avoiding the bounded recursion?

1992 - Bellantoni \& Cook

A new recursion-theoretic characterization

 of the polytime functions$$
f(\underbrace{x, \ldots}_{\text {normal }} ; \underbrace{y, \ldots}_{\text {safe }})
$$

- initial functions: $0, s(; a), p(; a), i f(; a, b, c)$
- safe composition: $f(\vec{x} ; \vec{a})=h(\overrightarrow{r(\vec{x} ;}) ; \overrightarrow{t(\vec{x} ; \vec{a})})$
- safe recursion on notation:

$$
\left\{\begin{array}{l}
f(0, \vec{x} ; \vec{a})=g(\vec{x} ; \vec{a}) \\
f(y i, \vec{x} ; \vec{a})=h_{i}(y, \vec{x} ; \vec{a}, f(y, \vec{x} ; \vec{a}))
\end{array}\right.
$$

Polytime is the closure of the initial functions under safe composition and safe recursion on notatios, without safe inputs

- it's impossible to move variables from the safe zone to the normal one (in the definition of composition, r has no safe variables)
- hence, we cannot use the recursive call $f(y, \vec{x} ; \vec{a})$ as recursive variable of another function h, also defined by recursion

We can rewrite \oplus and \otimes using the safe recursion; this is the only way these functions can be defined within this framework

$$
\left\{\begin{array} { l }
{ \oplus (0 ; x) = x } \\
{ \oplus (y + 1 ; x) = s (; \oplus (y , x)) }
\end{array} \quad \left\{\begin{array}{l}
\otimes(0, x ;)=0 \\
\otimes(y+1, x ;)=\oplus(x ; \otimes(y, x ;))
\end{array}\right.\right.
$$

- We have a predicative characterization: initial func's+safe recursion+safe composition $=$ Polytime
- What happens if we violate the rule of not moving variables from safe to normal zone? initial func's+safe recursion+safe composition +k violations $=\mathcal{E}^{k}$
- k violations \Rightarrow the k -th Grzegorczyk class !!

Critique to this approach to complexity

Even if the safe recursion can capture Polytime, it does it via the Turing model, inefficiently

For instance

- simple sorting (polynomial) cannot be described by the safe recursion
- simple functions (the minimum) are computed with a higher complexity

Martin Hofmann

The strength of non-size-increasing computation

```
insert(x, nil) = cons(x,nil)
insert(x,cons(y,l)) = if x\leqy then cons(x,cons(y,I)) else cons(x,insert(x,I))
sort(nil) = nil
sort(cons(x,I)) = insert(x,sort(I))
```

This algorithm is not defined by safe recursion

Loic Colson

Intensional aspects of functional systems

The straightforward algorithm for the minimun between two numbers is:

$$
\begin{aligned}
& \min (0, y)=0 \\
& \min (s(x), 0)=0 \\
& \min (s(x), s(y))=s(\min (x, y))
\end{aligned}
$$

the computation time of \min is $\mathrm{O}(\min (x, y))$.
Defining min as a primitive recursion:

$$
\min ^{\prime}(x, y)=\operatorname{if}(\operatorname{sub}(x, y), y, x)
$$

the computation time of min' is $\mathrm{O}(\mathrm{y})$.
But how can I know the minimum between two numbers, if I'm still defining the minimum function?

Measures of programs

1999 - Neil Jones
 LOGSPACE and PTIME characterized by programming languages

". . . what is the effect of the programming style we employ (functional, imperative, ...)
on the efficiency of the programs we can possibly write?"

Kristiansen \& Niggl
 On the computational complexity of imperative programming languages

An imperative programming language operating on stacks

```
push(a,X)
pop(X)
nil(X)
```

```
sequencing - P;Q
if-then-else - if top (X) \equiva then [P]
iteration (call by value) - foreach X [P])
```


three examples of stack programs

$$
P_{1}:=\text { foreach } X[\ldots \text { foreach } X[\text { push }(a, Y)]]
$$

- if v is stored in X before P_{1} is executed, then Y holds $a^{|v|}$ after the execution of P_{1}
- the depth of loop-nesting is a necessary condition for high computational complexity, but it is not sufficient

three examples of stack programs

$P_{2}:=\operatorname{nil}(Y) ; \operatorname{push}(a, Y) ; \operatorname{nil}(Z) ; \operatorname{push}(a, Z)$;
foreach X [nil (Z); foreach Y [push (a, Z); push $(a, Z)]$;
nil (Y); foreach $Z[\operatorname{push}(\mathrm{a}, \mathrm{Y})]]$
$\mathrm{P}_{3}:=\operatorname{nil}(\mathrm{Y}) ; \operatorname{push}(\mathrm{a}, \mathrm{Y}) ; \operatorname{nil}(\mathrm{Z})$;
foreach X [foreach $\mathrm{Y}[\operatorname{push}(\mathrm{a}, \mathrm{Z}) ; \operatorname{push}(\mathrm{a}, \mathrm{Z}) ; \operatorname{push}(\mathrm{a}, \mathrm{Y})]]$

- both P_{2} and P_{3} have nesting depth 2, but
- if w is stored in X, then Z holds $a^{2|w|}$ after P_{2} is executed
- if w is stored in X, then Z holds $a^{|w|(|w|+1)}$ after P_{3} is executed.
P_{3} runs in polynomial time, whereas P_{2} has exponential running time.

increasing circles

What causes the exponential growth in P_{2} ?
$P_{2}:=\operatorname{nil}(Y) ; \operatorname{push}(a, Y) ; \operatorname{nil}(Z) ; \operatorname{push}(a, Z)$; foreach $X[$ nil (Z); foreach $Y[p u s h(a, Z)$; $\operatorname{push}(a, Z)]$; nil (Y); foreach $Z[p u s h(a, Y)]]$

- there is a circle inside the outermost loop in P_{2}
- first Y updates Z (via push(a,Z))
- then Z updates Y
- in contrast, there is no such circle in P_{3} and P_{3}
P_{1} and P_{3} both have μ measure $0 ; \mathrm{P}_{2}$ has μ measure 1
Programs with two levels of nesting circles will have μ measure 2 .

a syntactical measure of the complexity of imperative programs

The μ-measure of a program operating on stacks is

$$
\begin{array}{ll}
\mu(\operatorname{push}(\mathrm{a}, \mathrm{X}))=0 & \mu(\mathrm{P} ; \mathbf{Q})=\max (\mu(\mathrm{P}) ; \mu(\mathbf{Q}))) \\
\mu(\operatorname{pop}(\mathrm{X}))=0 & \mu(\text { if top }(\mathrm{X}) \equiv \text { a then }[\mathrm{P}])=\mu(\mathrm{P}) \\
\mu(\operatorname{nil}(\mathrm{X}))=0 & \mu(\text { foreach } \mathbf{X}[\mathrm{P}])=\mu(\mathrm{P})+1 \text { if there is a circle } \\
& \mu(\text { foreach } \mathbf{X}[\mathrm{P}])=\mu(\mathrm{P}) \text { otherwise }
\end{array}
$$

- programs with μ measure n can be simulated by a TM with time complexity in \mathcal{E}^{n+2}
- TM with time complexity in \mathcal{E}^{n+2} can be simulated by programs of measure n

A note on the nature of programs - a new measure

honest and dishonest programs

- honestly feasible programs:
each sub-program can be computed by a polynomial TM
- dishonestly feasible programs:
- they compute a polynomial function, in more than polynomial time
- they run in polynomial time, but some sub-program (when run separately), runs in more than polynomial time

Two lines of research

- restrict the stack program language (to capture only honest programs)
- improve the measure (to capture the highest number of program, even the dishonest)

Covino

A note on a syntactical measure of the complexity of programs

Fact: is there is a nested circle, the μ measure is increased
Questions: what happens when ...

- there are nested instructions that do not change the overall space?
- there are nested subprograms that do not change the overall space?
- there are nested circles that do not change the overall space?

Answer:

- there is no growth in the complexity of the computed function
- but the μ measure does not detect it!

introducing a new measure σ

to detect the previous situation we separate the circles in

- increasing, that increase the dimensions of the stacks involved in the circle itself
- not-increasing, that leave unchanged the total dimensions of the stacks

If a circle is not increasing, the σ measure is not increased

σ-measure for a single variable (1)

Let P be a stack program and Y a stack; $\operatorname{imp}(\mathrm{Y})$ denotes an imperative $\operatorname{pop}(\mathrm{Y})$, push (a, Y), or nil (Y); $\bmod (\overline{\mathrm{X}})$ denotes a modifier, i.e., a sequence of imp operating on variables in $\overline{\mathrm{X}}$; $\sigma_{\mathrm{Y}}(\mathrm{P})$ is defined as follow:

1. $\sigma_{Y}(\bmod (\bar{X})):=\operatorname{sg}\left(\sum \hat{\sigma}_{Y}(\operatorname{imp}(Y))\right)$, for each $\operatorname{imp}(Y)$ in $\bmod (\bar{X})$, where

$$
\begin{aligned}
& \hat{\sigma}_{Y}(\operatorname{push}(a, Y)):=1 \\
& \hat{\sigma}_{Y}(\operatorname{pop}(Y)):=-1 ; \\
& \hat{\sigma}_{Y}(\operatorname{nil}(Y)):=-\infty ; \\
& \hat{\sigma}_{Y}(\operatorname{imp}(X)):=0, \text { with } Y \neq X ;
\end{aligned}
$$

2. $\sigma_{\mathrm{Y}}($ if top $\mathrm{Z} \equiv \mathrm{a}[\mathrm{P}]):=\sigma_{\mathrm{Y}}(\mathrm{P})$;
3. $\sigma_{\mathrm{Y}}\left(\mathrm{P}_{1} ; \mathrm{P}_{2}\right):=\max \left(\sigma_{\mathrm{Y}}\left(\mathrm{P}_{1}\right), \sigma_{\mathrm{Y}}\left(\mathrm{P}_{2}\right)\right)$;

σ-measure for a single variable (2)

4 - $\sigma_{\mathrm{Y}}($ foreach $\mathrm{X}[\mathrm{Q}]):=\sigma_{\mathrm{Y}}(\mathrm{Q})+1$, if there exists a circle in Q , and a subprogram Q_{i} s.t.
(a) Y and Q_{i} are involved in the circle;
(b) $\sigma_{\mathrm{Y}}(\mathrm{Q})=\sigma_{\curlyvee}\left(\mathrm{Q}_{\mathrm{i}}\right)$;
(c) the circle is increasing;

- $\sigma_{\mathrm{Y}}($ foreach $\mathrm{X}[\mathrm{Q}]):=\sigma_{\mathrm{Y}}(\mathrm{Q})$, otherwise
a circle is not increasing if, denoted with $Q_{1}, Q_{2}, \ldots, Q_{\text {I }}$ and with $Z_{1}, Z_{2}, \ldots, Z_{1}$ the sequences of subprograms and, respectively, of variables involved in the circle, we have that $\sigma_{z_{i}}\left(Q_{j}\right)=0$, for each $i:=1 \ldots /$ and $j:=1 \ldots /$.

If the previous condition doesn't hold, we say that the circle is increasing.

σ-measure for a single variable (3)

Note that the "otherwise" case in (4) can be split in three different cases

1. Y is not involved in any circle
2. Y and Q_{i} are involved in a circle in Q , but $\sigma_{\mathrm{Y}}\left(\mathrm{Q}_{i}\right) \leq \sigma_{\mathrm{Y}}(\mathrm{Q})$
(there is a blow-up in the complexity of Y in Q_{i}, but this growth is lower than the growth of Y in a different subprogram of Q)
3. Y is involved in some circles, but they are not increasing (each variable Z_{i} involved in each circle doesn't produce a growth in the complexity of the subprograms Q_{j} involved in the same circle)

In these cases, the space used by foreach $\mathrm{X}[\mathrm{Q}]$ is the same used by Q (one can iterate a not increasing program without leading an harmful growth); σ must remain unchanged!
σ is increased only when an increasing top circle occurs and at least one of the variables involved in that circle causes a growth in the space complexity of the related subprogram.

σ-measure for all variables

$\sigma(\mathrm{P})$ is defined as follows:
$\sigma(\mathrm{P}):=\tilde{\sigma}(\mathrm{P})-1$ (the cut-off subtraction), and

1. $\tilde{\sigma}(\bmod (\bar{X})):=0$
2. $\tilde{\sigma}($ if top $Z \equiv a[Q]):=\max \left(\sigma_{\mathrm{Y}}(\right.$ if top $\left.Z \equiv a[Q])\right)$, for all Y in P ;
3. $\tilde{\sigma}\left(\mathrm{P}_{1} ; \mathrm{P}_{2}\right):=\max \left(\sigma_{\mathrm{Y}}\left(\mathrm{P}_{1} ; \mathrm{P}_{2}\right)\right)$, for all Y in P ;
4. $\tilde{\sigma}($ foreach $\mathrm{X}[\mathrm{Q}]):=\max \left(\sigma_{\mathrm{Y}}(\right.$ foreach $\left.\mathrm{X}[\mathrm{Q}])\right)$, for all Y in P .

- $\sigma \leq \mu$ for all dishonest programs
- this measure considers only loops in which subprograms with a size-increasing effect are iterated
- programs with μ measure n can be simulated by a TM with time complexity in \mathcal{E}^{n+2}
- TM with time complexity in \mathcal{E}^{n+2} can be simulated by programs of measure n

