

BRAININFO 2024

Neurophysiological Changes Underlying Inhibitory Control in Mild Age-Related Hearing Loss

Shraddha A. Shende¹ & Raksha A. Mudar²

¹Illinois State University, <u>sashend@ilstu.edu</u>

²University of Illinois Urbana-Champaign, <u>raksha@illinois.edu</u>

Presenter: Dr. Shraddha Shende

- Director, Hearing-Cognition Research Laboratory <u>https://about.illinoisstate.edu/sashend/</u>
- Areas of expertise/interest
 - Aging
 - Hearing loss
 - Cognition
 - Audiology
 - Auditory cognitive neuroscience

Age-Related Hearing Loss (ARHL)

- ~400 million live with hearing loss
 - Age-Related Hearing Loss (ARHL): Gradual loss of hearing with age (Cruickshanks et al., 2003; NIDCD, 2018)
 - Most prevalent (Haile et al., 2021)
 - Leading cause of Global Years Lived with Disability (GLDs)
- By 2050: ~700 million
 - ARHL leading cause

Prevalence of hearing loss 35 dB or greater, 1990-2019, with forecasts to 2050, by WHO region. Retrieved from Haile et al. (2021)

Cognitive Alterations in ARHL

Event-Related Encephalography (EEG)

- Captures neural activity time-locked to specific events (e.g., stimuli of inhibitory control paradigm)
- Real-time changes in neurophysiological mechanisms underlying cognitive processes

• <u>Current Study</u>:

- <u>Primary Aim</u>: Used EEG to examine neurophysiological changes corresponding to inhibitory control tasks in those with unaided mild ARHL relative to normal hearing controls with comparable age- and education.
- <u>Secondary Aim</u>: Association between speech-in-noise recognition, a common problem reported by those with ARHL, and EEG correlates of inhibitory control

Source: Luck, S. J. (2005). An introduction to eventrelated potential technique

EEG Analyses

Event-Related Potentials (ERPs) <i>Time</i> (Hillyard & Allo-Vento; Luck, 2005; Woodman, 2010)	Event-Related Spectral Perturbation (ERSPs) <i>Frequency and Time</i> (Klimesch et al., 1997; Makeig, 1993; Pfurtscheller & Klimesch, 1992)	
Latency and amplitude	Mean power • Event-related synchronization (ERS) • Event-related desynchronization (ERD)	
(v) end (v) $\frac{2.0}{1.5}$ $\frac{1.0}{0.5}$ $\frac{1.0}{0.5}$ $\frac{1.0}{0.5}$ $\frac{1.0}{0.5}$ $\frac{1.0}{1.5}$ $$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Methods

Participant Demographics

	ARHL	NH	p
Total N	17	25	
Age (years)	67.18 (7.26)	66.04 (7.05)	.615
Education (years)	17.82 (3.48)	17.20 (2.30)	.489
Sex	13F/4M	17F/8M	.406

Quick Speech-in-Noise Test (QuickSIN, Killion et al., 2004)

P	ractice List A (Track 21) - Result: 3,5 - Right 🤇 🤌	Result: 0,5			8
			Score	9	
	The lake sparkled in the red hot sun.	🔵 S/N 25	5	5	
	Tend the sheep while the dog wanders	🔵 S/N 20	5	5	
	Take two shares as a fair profit	🔵 S/N 15	4	5	
	North winds bring colds and fevers	🔵 S/N 10	4	5	
	A sash of gold silk will trim her dress	S/N 5	3	3	
	Fake stones shine but cost little	S/NO	1	2	
		Total	22	25	5
	25.5 - TOTAL =	SNR loss	3,5	0,	5

Image: Interacosutics.com

Instruction: "You are going to see some dogs/animals and cars/objects. When you see a dog/animal, do not push the button. Press the button for anything that is not a/an dog/animal. Be as quick and as accurate as possible".

Car/Objects (Go Item): 160 Trials (80%) Dog/Animals (NoGo Item): 40 Trials (20%)

> **Stimulus Presentation** Duration: 300 ms Fixation ("+"): 1,700 ms

EEG Acquisition

- Continuous EEG is recorded during Go/NoGo task using 64-electrode Neuroscan Quik-cap
- Neuroscan EEG system
 - Neuroscan SynAmpsRT amplifier (sample rate: 1000 Hz, bandpass filter: DC-200 Hz)
 - Scan v4.5 software
- Reference electrode between Cz and CPz; electrode impedances < 10 k Ω
- Vertical electrooculogram: above and below left eye

EEG Pre-Processing

- Neuroscan edit will be used to process raw EEG offline
- Identification of poorly functioning electrodes; removed from analyses
- Eye blinks correction
- Data epoching: -500 to 1500 ms
- Epochs with amplitudes > 75 μV: rejected
- Epochs will then be re-referenced to average potential of whole scalp

ERP Analyses

- Neuroscan Edit
- Baseline correction: -500 to 0
- Interpolation of data to sites of bad electrodes
- ERP averages created separately for trials (Go/NoGo); task (Single-Car/Object-Animal)

	N2*	P3*
Time-window	150 to 300 ms	250 to 600 ms
Electrode sites	Average of six	Average of nine
	• Frontal (F1, Fz, F2)	 Frontocentral (FC1, FCz, FC2)
	• Frontocentral (FC1,	Central (C1, Cz, C2)
	FCz, FC2)	Centroparietal (CP1, CPz, CP2

Fpz ·Fp2 · AF7 • AF8 AF4 ۰F7 ۰F6 ۰F5 ·F1 ·Fz ·F2 F4 ·FT7 ·FC5 ·FC FC4 ·FC6 • FT ·FC1 ·FCz ·FC2 •C1 •Cz •C2 **•T**7 ·C5 +C3 ·C6 •T8 ·CP1 ·CPz ·CP2 ·CP4 +CP3 ·CP6 ·CP5 •TP7 · TP8 •P1 •Pz •P2 •P4 •P3 •P6 • P7 ·P07 PO8 ۰01 02 Oz

ERP Measures: Latency and Amplitude

*Maguire et al. (2009, 2011); Mudar et al. (2015)

ERSP Analyses

- EEGLAB toolbox with *newtimef.m* function (Delorme & Makeig, 2004)
- Short-time Fourier transform, Hanning window tapering
- 512 ms sliding window, 10 ms step size, pad ratio of 2 ≈ 1 Hz frequency resolution
- Baseline correction using gain model (Grandchamp & Delorme, 2011)

Time-windows (ms)	 150-300 ms 300-650 ms
Electrode clusters*	 Frontal (F1, Fz, F2) Frontocentral (FC1, FCz, FC2) Central (C1, Cz, C2) Centroparietal (CP1, CPz, CP2) Parietal (P1, Pz, P2)
Measures*	 Event-related synchronization: theta band (4-7 Hz) Event-related desynchronization: low (8-10 Hz) and high frequency (11-13 Hz) alpha band

*Lydon et al. (2022); Mudar et al. (2019); Nguyen et al. (2017)

Statistical Analyses

• General Linear Models (GLMs)

- Separate for Single-Car and Object-Animal task
- Behavioral Data (accuracy)
 - Between-subject: group (ARHL/NH)
 - Within-subject: trial type (Go/NoGo)

- ERP Data (N2, P3 latency and amplitude)
 - Between-subject: group (ARHL/NH)
 - Within-subject: trial type (Go/NoGo)
- ERSP Data (Theta synchronization; low- and highalpha desynchronization)
 - Between-subject: group (ARHL/NH)
 - Within-subject: trial type (Go/NoGo)

- Alpha at .05
- Bonferroni corrections for multiple comparisons

Statistical Analyses

Associations

- Partial Pearson's correlations
 - Binaural QuickSIN score ERP/ERSP measures
 - Control variable: Better-ear PTA (measure of peripheral hearing)
 - Guided by findings of group differences
 - Correlations with ERP/ERSP measures where significant effects of group and/or interactions between group and trial observed

Behavioral Data: Accuracy

- Interaction effect: Group x Trial in Single-Car Task (p = .019)
 - Within ARHL: NoGo < Go (*p* < .001)
 - Within NH: NoGo \cong Go (p > .05)

ARHL Group: Alterations in inhibiting responses to NoGo trials relative to Go trials

Impaired inhibitory control tied to perceptual processing in unaided mild ARHL

N2 ERP Latency, 150-300 ms

Single-Car Task

Interaction effect: Group x Trial, **N2 latency** (*p* = .002)

- Within ARHL: NoGo latency
 > Go latency (p = .006)
- Within NH: NoGo latency ≅
 Go latency (p > .05)

N2 ERP Latency, 150-300 ms

ARHL: Go trialsARHL: NoGo trials

Prolonged neural processing of NoGo relative to Go trials in ARHL, but similar pattern not seen in NH

Single-Car Task

P3 ERP Mean Amplitude, 250-600 ms

Object-Animal task

Interaction effect: Group x Trial, **P3 amplitude** (*p* = .033)

- Within NH: NoGo > Go (p < .001)
- Within ARHL: NoGo \cong Go (p > .05)

P3 ERP Mean Amplitude, 250-600 ms

High-Frequency Alpha Desynchronization, 300-650 ms

No high-frequency alpha desynchronization differences between Go and NoGo trials in ARHL, unlike NH

ARHL do not devote more neural resources/effort to process NoGo relative to Go trials

Go

Single-Car Task; Frontocentral Electrodes

Object-Animal Task; Central Electrodes

QuickSIN and P3 ERP in ARHL

Within ARHL group, worse central hearing related to increased neural effort/resources for performing inhibitory control task

Conclusion

- Different neural processing patterns across Go and NoGo trials in mild ARHL and NH groups
 - Neural differentiation for trial type seen early on in ARHL, although this differentiation not maintained in later time periods of processing
- Even mild ARHL affects neurophysiological mechanisms underlying inhibitory control
- Neurophysiological alterations observed even on visual tasks → modalityindependent changes in inhibitory control in mild ARHL
- In ARHL, those with worse SiN recognition tend to exhibit greater neural effort/resources to perform inhibitory control task

Limitations

- Small sample size
- Unequal groups
 - No 1:1 age- and education-matching of groups
- Future work examining visual inhibitory control is needed to examine the replicability of current findings

THANK YOU!

OUR PARTICIPANTS

