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Introduction

• Organization for Economic Cooperation and Development (OECD) has been promoting the

concept of responsible AI with transparency, explainability, and accountability [1].

• Explainable AI (XAI) has garnered attention in the AI system development, especially in the 
high-stakes decision scenarios, such as medical and healthcare domains [2].
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Literature Review (1/3)

Human-AI Collaboration

• Human and AI have different yet complementary capabilities [3].
• AI is not just a tool; it may become a teammate to enhance team performance [4].
• Human and AI can have mutual learning through which AI can learn from humans and humans 

can acquire insights from AI [5].
• ML needs methods that engage domain experts directly into the ML process and have them in

the loop until the desired results are received [6].
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Literature Review (2/3)
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Source: Google Cloud Architecture Center [7]

The domain experts need to join the training data labeling task, in the case of supervised 
learning, for obtaining high-quality training datasets and avoiding garbage in, garbage 
out results [8].



Literature Review (3/3)

Explainable AI (XAI)

• XAI is a useful tool to unveil the ML black box and provides an explanation for each AI system 

output [9].

• XAI is especially instrumental in medicine and healthcare to ensure that the system outputs 

produced by the AI system are correct and justifiable [10].
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Human-AI Collaboration Cycle
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ML Pipeline with XAI incorporated into model 
evaluation and validation process
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Research Methodology (1/3) 
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Research Methodology (2/3)
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Research Methodology (3/3)

Experiment Design
• Over 90 nurses from one local hospital will participate in this experiment.
• All nurses will be divided into three groups (Group A, B, and C)
• Each group will watch the same video demonstrating the brief introduction to the AI-enabled

fall detection system.
• We designed different interaction modes with the AI-enabled system for each group:

Group A: Participate in data preprocessing and data evaluation/validation with XAI incorporated.
Group B: Participate in data preprocessing and data evaluation/validation but without XAI

incorporated.
Group C: Does not participate in data preprocessing and data evaluation/validation, also without

XAI incorporated, to be informed of the system performance only. (As a control group)
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Human Skeleton
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Point        to       represents
the central line coordinate 
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and ankles respectively.

1 4 We measure the Speed of Human 
Central Line Coordinate (SHCLC)
to judge a fall event.



LIME Output Format
for an AI-enabled fall detection system
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This LIME output indicates that point       (SHCLC-1) has higher 
movement speed, which represents one kind of fall, e.g., fall over.
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Different Movement Speed 
on Different Portion of a Human While Falling
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The Timings of Pre-test and Post-test 
for Each Group
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Questionnaire

��I have confidence in the AI system performance.
��The AI system performance could be improved gradually.
��The output of the AI system is very predictable. 
��The AI system is very reliable. 
��The AI system is easy to use. 
��The AI system is very efficient.
��The AI system can act as part of my team.
��I like to use the AI system.

(Modified from R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman (2018))
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Data Analysis Proposed

��ANOVA tool will be used for the significance analysis on trust level between groups.

��In addition to the quantitative analysis, we will observe the differences in their interaction modes

with the AI-enabled system in each group and make a complete record for qualitative analysis.

��We have interest in the nurses’ feedback or response to the XAI output explanation for one specific

instance, which may encourage their data engagement.
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Research Contributions Expected

��This research will provide AI-enabled system designers with a HAC Cycle framework as a

guideline for developing a responsible AI system.

��This research will highlight the importance of domain experts’ engagement in the ML pipeline in
the development stage of an AI-enabled system.

��This research will highlight the functionality of XAI incorporated in the model evaluation and
validation process.
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