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Introduction

e Organization for Economic Cooperation and Development (OECD) has been promoting the

concept of responsible Al with transparency, explainability, and accountability [1].

e Explainable AI (XAI) has garnered attention in the Al system development, especially in the

high-stakes decision scenarios, such as medical and healthcare domains [2].
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Human-AI Collaboration

e Human and AI have different yet complementary capabilities [3].
e Al is not just a tool; it may become a teammate to enhance team performance [4].
e Human and AI can have mutual learning through which Al can learn from humans and humans

can acquire insights from AI [5].

e ML needs methods that engage domain experts directly into the ML process and have them in

the loop until the desired results are received [6].
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Machine Learning Pipeline
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Source: Google Cloud Architecture Center [7]

The domain experts need to join the training data labeling task, in the case of supervised
learning, for obtaining high-quality training datasets and avoiding garbage in, garbage
out results [8].
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Explainable Al (XAI)

e XAl is a useful tool to unveil the ML black box and provides an explanation for each Al system

output [9].

e XAl 1s especially instrumental in medicine and healthcare to ensure that the system outputs

produced by the Al system are correct and justifiable [10].



Human-AI Collaboration Cycle

Domain experts engage in the data

Back FO data prep FOCessing Data preprocessing, such as data labeling

stage 1f new test data fail to E and feature selections, etc

pass the model evaluati(V—) ngagement S

User User
Adoption Comprehensibility

User adoption to an Al- With XAI incorporated

enabled system \_ / into the model evaluation
User and validation, it
Trust enhances domain experts’

Domain experts’ trust in

an Al-enabled system comprehensibility with Al

system output reasons.



ML Pipeline with XAI incorporated into model
evaluation and validation process
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XAl is a useful tool to validate the model.
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Hypotheses
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Experiment Design
e Over 90 nurses from one local hospital will participate in this experiment.
e All nurses will be divided into three groups (Group A, B, and C)

e Each group will watch the same video demonstrating the brief introduction to the Al-enabled
fall detection system.

e We designed different interaction modes with the Al-enabled system for each group:
Group A: Participate in data preprocessing and data evaluation/validation with XAl incorporated.

Group B: Participate in data preprocessing and data evaluation/validation but without XAI
incorporated.

Group C: Does not participate in data preprocessing and data evaluation/validation, also without

XAI incorporated, to be informed of the system performance only. (As a control group)
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LIME Output Format

for an Al-enabled fall detection system
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This LIME output indicates that point @ (SHCLC-1) has higher
movement speed, which represents one kind of fall, e.g., fall over.

13



Different Movement Speed
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The Timings of Pre-test and Post-test
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Questionnaire

* | have confidence in the Al system performance.

* The Al system performance could be improved gradually.
 The output of the Al system is very predictable.

* The Al system 1s very reliable.

* The Al system is easy to use.

» The Al system 1s very efficient.

* The Al system can act as part of my team.

e | like to use the Al system.

(Modified from R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman (2018))
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Data Analysis Proposed

« ANOVA tool will be used for the significance analysis on trust level between groups.

» In addition to the quantitative analysis, we will observe the differences in their interaction modes

with the Al-enabled system in each group and make a complete record for qualitative analysis.

* We have interest in the nurses’ feedback or response to the XAl output explanation for one specific

instance, which may encourage their data engagement.
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Research Contributions Expected

* This research will provide Al-enabled system designers with a HAC Cycle framework as a

guideline for developing a responsible Al system.

* This research will highlight the importance of domain experts’ engagement in the ML pipeline in

the development stage of an Al-enabled system.

* This research will highlight the functionality of XAI incorporated in the model evaluation and

validation process.
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