

You've Got a Plan?

A Domain Modelling Approach for Collaborative Product Disassembly Planning with PDDL

ADVCOMP 2024, 2nd of October

Dominique Briechle, Andreas Rausch Clausthal University of Technology Institute for Software and Systems Engineering dominique.fabio.briechle@tu-clausthal.de

Dominique Briechle, M.Sc.

Research Interest:

- Digitized Circular Economy
- AI-Planning Systems for Automation Processes
- Digital Twin & Cyber-Physical Systems Design
- Software Engineering for Robotics
- CV:
 - 2019: B.Sc. Energy and Raw Materials
 - 2021: M.Sc. Petroleum Engineering
 - 2021: Academic Researcher Center for Digital Technologies TU Clausthal & Ostfalia
 - 2022: Academic Researcher Institute for Software and Systems Engineering

Relevance of the Research

- Resource scarcity is increasing with every year!
- Linear Economy is still in place in industries
- Circular Economy keeps resources in a cycle
- We need a shift, from LE to CE!
- Especially production is energy and resource consuming
- Repairing, Refurbishing and Remanufacturing (3Rs) of products can mitigate these consumption

But how?

Problem Statement

- Discarding of products is nowadays easy
- On the opposite 3R operations are hard to conduct
- Reasons are, among others:
 - Economic Factors
 - Lack of skilled laborer
 - Technical obsolesces and inability to upgrade
 - Inability of companies to cope high amount and variety of used incoming products
- Automated Systems can mitigate some of those effects
- However, adaptivity is key and automated systems must be enabled to act in an adaptive manner

Problem Statement

So how can we enable Automated Systems to get from here...

to here and be adaptive at the same time?

Scope of the Paper

- Two central subjects:
 - Conception of a model which takes the structural hierarchy and variety of products into account
 - Implementation and Testing of an AI-based sequence Planner
- Contribution to the research question:
 - Contribution of a meta-model, suitable to describe compositional structure in a modular and flexible way
 - Formulated PDDL-Domain derived from the meta-model to generate AI-based sequence plans for robotic disassembly systems
 - Evaluation and Testing with two product models, defined as PDDL-Problem on a Planner-based level

Overall Concept

Meta-Model

Product Assembly Description Library (PADL)

- PADL contains the general objects of our Meta-Model
- It is used to describe the compositional structure of the products
- Link establishes systematic connection between system entities
- Extensions of *Connection* act as specifications

1 POGREEN KCHISS NHISONNICHISS

Disassembly Action Library (DAL)

- DAL contains the model of the DisassemblyActions, required to disconnect the corresponding links
- Extensions enable the specification of disassembly operations

Meta-Model

Implementation in PDDL

- Planning Domain Definition Language (PDDL) is used to implement the model
- PDDL is a descriptive language for AI-based Planning, which allows the formulation...
 - ...of the meta-model entities as types
 - ...the meta-model links as predicates
 - ...the *DisassemblyActions* as Actions in the Domain
- Domain contains the information for the generation of Problems, which are then solved by a Solver/Parser combination

PDDL Domain – Types & Predicates

1910 TAHYSON TO N

(:requirements :typing)
(:types
part - object
connectorport - object
connection - object
composition - object
interconnection - connection
transconnection - connection

(:predicates

(comp_has_cp ?part - part ?connectorport - connectorport)

(has_comp ?part - part ?composition - composition)

(has_part ?composition - composition ?part - part)

(has_con ?composition - composition ?connection - connection)

(con_has_cp ?connection - connection ?connectorport connectorport)

PDDL Domain - Actions

Dominique Briechle, M.Sc. ISSE – Institute for Software and Systems Engineering

(:action disconnect composition-interconnection :parameters (?comp - composition ?i1 - interconnection ?p1 - part ?p2 - part ?c1 - connectorport ?c2 - connectorport :precondition (and (has con ?comp ?i1) (forall (?deleg - transconnection) (not(has con ?comp ?deleg)) (forall (?parts - part) (not(has comp ?parts ?comp)) (part_has_cp ?p1 ?c1) (part has cp ?p2 ?c2) (has_part ?comp ?p2) (has part ?comp ?p1) (con_has_cp ?i1 ?c1) (con has cp ?i1 ?c2) (not(= ?c1 ?c2)) (not(= ?p1 ?p2)) :effect (and (not(has_con ?comp ?i1)) (not(con has cp ?i1 ?c1))

(not(con has cp ?i1 ?c2))))

(not(con_has_cp ?t1 ?c1)) (not(con has cp ?t1 ?c2))

6

4

PDDL Domain - Actions

(:action disconnect_part-composition :parameters (?part - part ?comp - composition ?c1 - connectorport ?c2 - connectorport ?i1 - interconnection :precondition (and (forall (?over - composition) (not(has part ?over ?part)) (has comp ?part ?comp) (part has cp ?part ?c1) (part has cp ?part ?c2) (not(con has cp ?i1 ?c1)) (not(con has cp ?i1 ?c2)) (not(= ?c1 ?c2)) :effect (and (not(has comp ?part ?comp))

(:action disconnect composition-part :parameters (?comp - composition ?part - part ?c1 - connectorport ?c2 - connectorport ?i1 - connection ?i2 - connection :precondition (and (part has cp ?part ?c1) (part has cp ?part ?c2) (has part ?comp ?part) (forall (?links - connection) (not(has con ?comp ?links) (not(con has cp ?i1 ?c1)) (not(con has cp ?i2 ?c2)) (not(= ?c1 ?c2)) (not(= ?i1 ?i2)) :effect (and (not(has part ?comp ?part))

Problem Statement

Can we now get from here...

Ô

Test Scenario

- PDDL implementation was tested with two different Use-Cases on a planning base:
 - Smoke detector
 - Power Tool Battery
- Problems were drafted as Composition Structure Diagrams
- Composition Structure Diagrams captures the assembled state, that is used to define the initial state of the Problem

TU Clausthal

Results

- Solving was carried out via the tool: <u>https://editor.planning.domains/</u>
- As Solver, out of the standard implementation solvers, the BFWS Solver with an ff Parser was the most suitable option
- Plans were generated by the solver according to the Composition Structure Diagrams
- Application of different specified Actions were conducted in accordance to the preconditions

	Smoke Detector	Power Tool Battery
Total time:	1.05921 sec.	1.24214 sec.
Nodes generated during search:	332	429
Nodes expanded during search:	312	169
Plan found with cost:	15	25

Conclusion

- Definition of a Meta-Model allows the description of product assemblies and the according disassembly environment
- Disassembly planning is conducted via PDDL and showed, how such systems can generate sequence-based disassembly plans
- However, model has certain Limitations:
 - Condition is not regarded as a factor
 - Cost-based considerations have not played a part in the selection of actions
- Future Outlook:
 - Implement identified limitations into the Meta-Model and the according PDDL System
 - Test planner-based disassembly structure on Robot system with defined interfaces

References

- [1] J. Bach er, Y. Dams, T. Duhoux, Y. Deng, T. Teittinen, and L. F. Mortensen, "Electronic products and obsolescence in a circular economy," Eionet Report ETC/WMGE, no. 3, 2020.
- [2] Y. Sitaramaiah and M. K. Kumari, "Impact of electronic waste leading to environmental pollution," Journal of Chemical and Pharmaceutical Sciences, no. JCHPS Special Issue 3, 2014.
- [3] M. A. Khan, S. Mittal, S. West, and T. Wuest, "Review on upgradability A product lifetime extension strategy in the context of product service systems," Journal of Cleaner Production, no. 204, pp. 1154–1168, 2018.
- [4] X. Zhang, L. Zhang, K. Y. Fung, B. R. Bakshi, and K. M. Ng, "Sustainable product design: A life-cycle approach," Elsevier Chemical Engineering Science, no. 217, 2020.
- [5] N. Roskladka, A. Jaegler, and G. Miragliotta, "From "right to repair" to "willingness to repair": Exploring consumer's perspective to product lifecycle extension," Journal of Cleaner Production, no. 432, 2023.
- [6] G. Foo, S. Kara, and M. Pagnucco, "Challenges of robotic disassembly in practice," 29th CIRP Life Cycle Engineering Conference, no. 29, pp. 513–518, 2022.
- [7] K. Wegener, W. H. Chen, F. Dietrich, K. Dr"oder, and S. Kara, "Robot Assisted Disassembly for the Recycling of Electric Vehicle Batteries," The 22nd CIRP conference on Life Cycle Engineering, no. 22, pp. 716–721, 2015.
- [8] S. L. Soh, S. K. Ong, and A. Y. C. Nee, "Design for Disassembly for Remanufacturing: Methodology and Technology," Procedia CIRP 15, no. 15, pp. 407–412, 2014.
- [9] M. M. L. Chang, S. K. Ong, and A. Y. C. Nee, "Approaches and Challenges in Product Disassembly Planning for Sustainability," The 27th CIRP Design, no. 27, pp. 506–511, 2017.
- [10] A. J. D. Lambert, "Disassembly sequencing: a survey," International Journal of Production Research, no. 41, pp. 3721–3759, 2003.
- [11] C. Heemskerk, L. Reijers, and H. Kals, "A Concept for Computer-Aided Process Planning of Flexible Assembly," CIRP Annals, vol. 39, no. 1, pp. 25–28, 1990, ISSN: 0007-8506.
- [12] E. Pednault, "ADL: Exploring the middle ground between STRIPS and the situation calculus," International Conference on Principles of Knowledge Representation and Reasoning, no. 1, pp. 324–332, 1989.
- [13] K. Erol, J. A. Hendler, and D. Nau, "UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning," Conference on Artificial Intelligence Planning Systems (AIPS), no. 2, pp. 249–254, 1994.
- [14] D. McDermott, M. Ghallab, A. Howe, et al., "PDDL-The Planning Domain Definition Language," Tech Report CVC TR- 98-003/DCS TR-1165, 1998.
- [15] T. Hoebert, D. Neubauer, M. Merdan, W. Lepuschitz, Thalhammer, and M. Vincze, "ROS-driven Disassembly Planning Framework incorporating Screw Detection," International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), no. 20, 2023.
- [16] Y. Zhang, H. Zhang, W. Zhigang, S. Zhang, H. Li, and M. Chen, "Development of an Autonomous, Explainable, Robust Robotic System for Electric Vehicle Battery Disassembly," IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 409–414, 2023.
- [17] S. U. Lee, A. Hofmann, and B.Williams, "A Model-Based Human Activity Recognition for Human–Robot Collaboration," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 736–743, 2019.
- [18] C. Deiters, "Description and consistent composition of building blocks for the architectural design of software systems," Ph.D. dissertation, University of Technology Clausthal, Clausthal-Zellerfeld, GER, 2015.
- [19] S. Herold, "Architectural Compliance in Component-Based Systems Foundations, Specification, and Checking of Architectural Rules," Ph.D. dissertation, University of Technology Clausthal, Clausthal-Zellerfeld, GER, 2011.