
Comparing Fault-tolerance 
in Kubernetes and Slurm in 
HPC Infrastructure

Mirac Aydin, Michael Bidollahkhani, Julian M. Kunkel

GWDG, University of Göttingen, Germany

The Eighteenth International Conference on Advanced 
Engineering Computing and Applications in Sciences

DECICE Project, Horizon Europe



Table of Content

• Motivation

• Background on Cluster Faults

• Architectures

• Methodology

• Results

• Conclusion
2



Motivation

• Understanding the effectiveness of fault-tolerance mechanisms in handling 

hardware/software failures

• Analysing the logs to create error profiles

• Using the results in EU DECICE Project

• Enhancing the anomaly detection capabilities of AI models

• Feeding cluster data into the Digital Twin for real-time monitoring and diagnostics
3



Background on Cluster Faults

Fault-tolerance: The ability of a system to continue operating in 

the presence of failures and to automatically heal itself

• Common faults in clusters:

• Hardware Failures: Node, network, and storage failures

• Software Failures: Application crashes, operating system 

failures, middleware issues

• Human Errors: Configuration errors, operational mistakes

• Environmental Factors: Power outages, cooling failures
4



Kubernetes Architecture

API 
Server

ETCD

Scheduler

Controller Kubelet

Kube-proxy

Master Node Worker Nodes

Container Runtime

Pod

PodPod

Pod

5



Fault-Tolerance in Kubernetes

• Self-Healing: Automatic container restarts

• Replication: Ensures redundancy of pods

• Horizontal Pod Autoscaler (HPA): Adjusts the number of pods based on usage

• CRIU (Checkpoint/Restore): Facilitates live migration and rollbacks

• RAFT Protocol: Maintains state consistency with leader elections (ETCD)

6



Slurm Architecture

slurmctld

slurmdbd
slurmd

Head Node Compute Nodes

database

slurmd

slurmd

slurmd

7



Fault-Tolerance in Slurm

• Node Failover: Reassigns jobs from failed nodes

• Job Checkpointing: Saves state for restart

• Health Checks: Monitors node health

• Job Requeueing: Failed jobs are requeued on healthy nodes

8



Methodology: Comparative Analysis

Kubernetes Cluster

Resources:
● 3 Master / 6 Worker nodes
● 52 Cores / 203 GB Memory

Data Collection:
● EFK Stack (Elasticsearch, Fluentd, Kibana)
● 1.8M log messages

HPC Cluster (SCC)

Resources:
● 410 Compute nodes
● 18.376 Cores / 99 TB Memory

Data Collection:
● Slurm agent logs
● 1.2M log messages

9



Labelling mechanism LLM Tools

Analytic Tools

Raw logs 
generated by 
Kubernetes

Compute Plane

EFK 
Stack NLP Classifier

LLM 
Pre-tokenizat

ion

Textual Data Labels
(Error sample-base)

LLM 
Labeler

PlotterStatistical 
Tool Sets

Slurm Agent logs
Raw logs 

generated by 
HPC system

labelled logs

Logs’ 
labels 

merging 
unit

New class

Labelled class

Methodology: Comparative Analysis

10



Error Distribution in 
Slurm

Impact: Highlights node initialization 

and resource management issues

Error messages that are less than 0.10% are neglected 

for presentation purposes.

11



Error Distribution in 
Kubernetes

Impact: Emphasizes network and API 

communication issues

Error messages that are less than 4% are neglected for 

presentation purposes.

12



Kubernetes vs Slurm

Recovery Time
● Kubernetes is faster due to self-healing and 

replication
● Slurm depends on node failover

Fault Detection
● Kubernetes robust with software health checks
● Slurm relies on node health checks

Overhead
● Kubernetes higher due to abstraction layers
● Slurm lower due to simpler fault detection 

mechanisms

13



Key 
Insights

Kubernetes excels in scalability, 
dynamic environments, quick recovery

Slurm is optimal for traditional HPC 
with efficient scheduling and resource 
management

Recommendation: Hybrid models 
leveraging both Kubernetes and Slurm 
strengths could enhance HPC 
resilience

14



Conclusion

• Fault-tolerance mechanisms of Slurm and Kubernetes were investigated

• Error distribution profiles were created for both platforms

• API communication issues on Kubernetes

• Job initialization issues on Slurm

Future Work

• Collecting more data to gain better insights

• Exploring AI-based general purpose predictive fault management, 

hybrid models for fault-tolerance in DECICE
15



Acknowledgments

Acknowledgment to the DECICE Project, GWDG resources, and supporting team 
members: Felix Stein, Mojtaba Akbari, Jonathan Decker

Project website: www.decice.eu

This project has received funding from the European Union’s Horizon 
Europe Research and Innovation Programme under Grant 
Agreement No 101092582.

16

http://www.decice.eu


Quick Review

• Fault-Tolerance Importance: Ensures resilience and continuous operation in HPC systems

• Kubernetes:
• Container orchestration platform

• Fault-Tolerance Mechanisms: Self-healing (automatic pod restarts), replication, Horizontal Pod Autoscaler 
(HPA), RAFT protocol for state consistency

• Best suited for dynamic, cloud-native environments with scalable workloads

• Kubernetes Strengths: Fast recovery, robust detection, self-healing mechanisms

• Slurm:
• HPC workload manager designed for large-scale computational jobs

• Fault-Tolerance Mechanisms: Node failover, job checkpointing, health checks, job requeuing

• Optimized for traditional HPC systems focusing on resource scheduling and minimal overhead

• Slurm Strengths: Efficient resource use, tailored for traditional HPC, node and job management

17


