

LIME-Aided Automated Usability Issue Detection from User Reviews: Leveraging LLMs for Enhanced User Experience Analysis

Presented by Bassam Alsanousi bassamalsanousi@my.unt.edu

Research Authors:

Bassam Alsanousi

Dr. Stephanie Ludi (Major professor)

Dr. Hyunsook Do (Co-Major Professor)

About the Presenter

Current Role:

- Ph.D. Candidate at University of North Texas
- Specializing in Computer Science and Engineering

Previous Experience:

- IT Director at Technical and Vocational Training Corporation (TVTC)
- Lecturer at (TVTC)

Research Interests:

- Focused on Human-Computer Interaction (HCI), Mining Software Repositories, NLP, AI, and LLMs.

Current Research:

- Empowering the Analysis of Mobile Apps User Feedback Leveraging LLMs

Research Overview

Problem Statement

 Most of the existing studies have analyzed user reviews of mobile apps to pinpoint usability challenges through manual or semi-automated approaches

• These efforts underscore the growing need for more semantically-aware techniques, aiding developers in refining the quality of mobile apps

Research Contributions

• We contribute by developing an approach that automatically detects usability issues from user reviews by leveraging LLMs

- This approach will provide developers with a more efficient method to identify usability concerns
- Aiming to improve the quality of mobile applications and enhance the overall user experience (UX)

Research Questions

RQ1	How effectively can LLMs semantically detect u effectiveness, efficiency, and satisfaction from
RQ2	Which LLMs have the most accurate results in cuser reviews?
RQ3	How do the classification from pre-trained mod and GPT-4) by OpenAi and Llama 2 by Meta, co
RQ4	How does applying explanation techniques such model-agnostic (LIME) enhance understanding usability issues?

usability issues related to user reviews?

classifying usability issues from

dels via API such as, (GPT-3.5 ompare to fine-tuned LLMs?

ch as local interpretable g model predictions for detecting

Methodology

Methodology - Usability Factors (ISO 9241-11)

Usability Factors	Definition
Effectiveness	Assesses the users' ability accurately and completely. to which users can accomp
Efficiency	Evaluates the level of effective the resources expended. He ficiently users can attain
Satisfaction	Measures users' overall c toward the product's usage find the product's usage en tory.

 Table 1: Usability Factors

to achieve their goals Focuses on the extent plish their objectives. fectiveness relative to Helps determine how their goals. comfort and attitudes

e. Reflects how users njoyable and satisfac-

Methodology - Examples

Multi Classes	User Reviews Examples
Effectiveness, Efficiency, and Satisfaction	"The new update is bad and the app is slow a
Satisfaction	"The worst banking app in the world."
Efficiency	"The application is slow and takes a long time
Effectiveness	"The application needs new maintenance and a
Satisfaction and Effectiveness	"The app keeps crashing. It's very frustrating."

Table 2: Examples of Multi-Class Classification and Corresponding User Reviews as Usability Issues

and sometimes gives errors"

ne to open and navigation between menus is slow" a new update. The amount does not appear in the account." g."

Methodology - Dataset

Figure 1: Dataset

The LLMs employed in our research

Model	Architecture	Parameters	Layers
BERT	bert-base-cased	110M	12
RoBERTa	roberta-base	125M	12
BART	bart-base	140M	6
TinyBERT	General 4L 312D	14M	4
XLNet	xlnet-base-cased	110M	12
DistilBERT	distilbert-base-cased	$65\mathrm{M}$	6
GPT2	gpt2	117M	12

Table 3: Details About the Fine-tuned Large Language Models Employed
 in Our Research

Approach

Figure 2: Proposed Approach

Evaluation Metrics

RQ1: LLMs can effectively and semantically detect usability issues related to effectiveness, efficiency, and satisfaction from user reviews.

Model	Accuracy	Precision	Recall	F1	Training Time (s)
BERT	0.95	0.96	0.94	0.95	1645
RoBERTa	0.96	0.96	0.97	0.96	1336
BART	0.95	0.94	0.95	0.95	1619
TinyBERT	0.90	0.89	0.90	0.89	173
XLNet	0.96	0.95	0.96	0.95	1616
DistilBERT	0.96	0.96	0.96	0.96	806
GPT2	0.93	0.92	0.93	0.92	1526

Figure 10: LIME Plot for Predicting Satisfaction Class

Table 5: The Results of each LLM Model

RQ2: RoBERTa, XLNet and **DisilBERT** have the most accurate results in classifying usability issues from user reviews.

Model	Accuracy	Precision	Recall	F1	Training Time (s)
BERT	0.95	0.96	0.94	0.95	1645
RoBERTa	0.96	0.96	0.97	0.96	1336
BART	0.95	0.94	0.95	0.95	1619
TinyBERT	0.90	0.89	0.90	0.89	173
XLNet	0.96	0.95	0.96	0.95	1616
DistilBERT	0.96	0.96	0.96	0.96	806
GPT2	0.93	0.92	0.93	0.92	1526

Table 5: The Results of each LLM Model

RQ2: RoBERTa, XLNet and **DisilBERT** have the most accurate results in classifying usability issues from user reviews.

Figure 11: Prediction Times of Each Model

RQ2: RoBERTa, XLNet and **DisilBERT** have the most accurate results in classifying usability issues from user reviews.

Figure 12: Validation Loss of Each Model

RQ3: Fine-tuned LLMs outperformed the pre-trained models via API such as, (GPT-3.5) and GPT-4) by OpenAI and Llama 2 by Meta.

Model	Accuracy	Precision	Recall	F1	Training Time (s)
BERT	0.95	0.96	0.94	0.95	1645
RoBERTa	0.96	0.96	0.97	0.96	1336
BART	0.95	0.94	0.95	0.95	1619
TinyBERT	0.90	0.89	0.90	0.89	173
XLNet	0.96	0.95	0.96	0.95	1616
DistilBERT	0.96	0.96	0.96	0.96	806
GPT2	0.93	0.92	0.93	0.92	1526
Llama 2 - Zero-shot	0.41	0.86	0.71	0.74	
Llama 2 - Few-Shot	0.73	0.88	0.97	0.90	
GPT-3.5	0.64	0.89	0.89	0.86	-
GPT-4	0.74	0.88	0.97	0.91	-

Table 6: The Results of each LLM Model

RQ4: LIME helped enhance understanding of model predictions for detecting usability issues in all classes.

Text with highlighted words

This app is very slow and always crashes. I'm frustrated.

RQ4: LIME helped enhance understanding of model predictions for detecting usability issues in all classes.

Figure 13: LIME Plot for Predicting Effectiveness Class

Text with highlighted words

This app is very slow and always crashes. I'm frustrated.

RQ4: LIME helped enhance understanding of model predictions for detecting usability issues in all classes.

Figure 14: LIME Plot for Predicting Efficiency Class

Text with highlighted words

This app is very slow and always crashes. I'm frustrated.

Predictive Reliability

Performance of Pre-trained Models

Real-world Applications of These Models

Threats to validity

Conclusion

Conclusion and Future Work

Thank you for listening

