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Problem Statement

e Most of the existing studies have analyzed user reviews of
@%}“} mobile apps to pinpoint usability challenges through manual or
semi-automated approaches

e These efforts underscore the growing need for more
semantically-aware techniques, aiding developers in refining the
quality of mobile apps




Research Contributions

e We contribute by developing an approach that
automatically detects usability issues from user reviews by
leveraging LLMs

oo e This approach will provide developers with a more efficient
method to identify usability concerns

/s e Aiming to improve the quality of mobile applications and
) enhance the overall user experience (UX)



Research Questions

RQ1

RQ2

RQ3

RQ4

How effectively can LLMs semantically detect usability issues related to
effectiveness, efficiency, and satisfaction from user reviews?

Which LLMs have the most accurate results in classifying usability issues from
user reviews?

How do the classification from pre-trained models via API such as, (GPT-3.5
and GPT-4) by OpenAi and Llama 2 by Meta, compare to fine-tuned LLMs?

How does applying explanation techniques such as local interpretable

model-agnostic (LIME) enhance understanding model predictions for detecting
usability issues?
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Methodology - Usability Factors (ISO 9241-11)

Usability Factors

Definition

Effectiveness

Efficiency

Satisfaction

Assesses the users’ ability to achieve their goals
accurately and completely. Focuses on the extent
to which users can accomplish their objectives.
Evaluates the level of effectiveness relative to
the resources expended. Helps determine how
efficiently users can attain their goals.
Measures users’ overall comfort and attitudes
toward the product’s usage. Reflects how users
find the product’s usage enjoyable and satisfac-
tory.

Table 1: Usability Factors



Methodology - Examples

Multi Classes User Reviews Examples

Effectiveness, Efficiency, and Satisfaction ”The new update is bad and the app is slow and sometimes gives errors”

Satisfaction ”The worst banking app in the world.”

Efficiency “The application is slow and takes a long time to open and navigation between menus is slow”
Effectiveness “The application needs new maintenance and a new update. The amount does not appear in the account.”
Satisfaction and Effectiveness “The app keeps crashing. It’s very frustrating.”

Table 2: Examples of Multi-Class Classification and Corresponding User Reviews as Usability Issues
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Methodology - Dataset

Satisfaction

Effectiveness

Usability Factors

Efficiency

3,841 reviews
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Figure 1: Dataset
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The LLMs employed in our research

Model Architecture Parameters Layers
BERT bert-base-cased 110M 12
RoBERTa  roberta-base 125M 12
BART bart-base 140M 6
TinyBERT  General 4L 312D 14M 4
XLNet xInet-base-cased 110M 12
DistilBERT distilbert-base-cased 656M 6
GPT?2 gpt2 117M 12

Table 3: Details About the Fine-tuned Large Language Models Employed
in Our Research

GPT by
OpenAl

Lliama 2
by Meta

N
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Approach
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Figure 2: Proposed Approach




Evaluation Metrics

Accuracy

Recall

Precision

F1
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Results
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Study Results

RQ1: LLMs can effectively and semantically detect usability issues related to
effectiveness, efficiency, and satisfaction from user reviews.

Model Accuracy Precision Recall F1 Training Time (s)
BERT 0.95 0.96 0.94 0.95 1645
RoBERTa 0.96 0.96 0.97 0.96 1336
BART 0.95 0.94 0.95 0.95 1619
TinyBERT 0.90 0.89 0.90 0.89 173
XLNet 0.96 0.95 0.96 0.95 1616
DistilBERT 0.96 0.96 0.96 0.96 806
GPT2 0.93 0.92 0.93 0.92 1526

Table 5: The Results of each LLM Model

Prediction probabilities NOT Satisfaction Satisfaction . . .
i [_) Ifrustrated Text with highlighted words
Satisfaction [N 1.00 . 095 This app is very slow and always crashes. I'm [fiiSitaied.
Effectiveness [ ] 1.00 Oéf
Efficiency [T 1.00 This

Fig. 3. LIME plot for predicting satisfaction class.

Figure 10: LIME Plot for Predicting Satisfaction Class 16



Study Results

RQ2: RoBERTa, XLNet and DisilBERT have the most accurate results in classifying
usability issues from user reviews.

Model Accuracy Precision Recall F1  Training Time (s)
BERT 0.95 0.96 0.94 0.95 1645
RoBERTa 0.96 0.96 0.97 0.96 1336
BART 0.95 0.94 0.95 0.95 1619
TinyBERT 0.90 0.89 0.90 0.89 173
XL Net 0.96 0.95 0.96 0.95 1616
DistilBERT 0.96 0.96 0.96 0.96 806
GPT2 0.93 0.92 0.93 0.92 1526

Table 5: The Results of each LLM Model
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Study Results

RQ2: RoBERTa, XLNet and DisilBERT have the most accurate results in classifying
usability issues from user reviews.

Prediction Time (seconds)

BERT RoBERTa BART TinyBERT XLNet DistilBERT GPT2
Model

Figure 11: Prediction Times of Each Model
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Study Results

RQ2: RoBERTa, XLNet and DisilBERT have the most accurate results in classifying
usability issues from user reviews.
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Figure 12: Validation Loss of Each Model



Study Results

RQ3: Fine-tuned LLMs outperformed the pre-trained models via API such as, (GPT-3.5
and GPT-4) by OpenAl and Llama 2 by Meta.

Model Accuracy Precision Recall F1  Training Time (s)
BERT 0.95 0.96 0.94 0.95 1645
RoBERTa 0.96 0.96 0.97 0.96 1336
BART 0.95 0.94 0.95 0.95 1619
TinyBERT 0.90 0.89 0.90 0.89 173
XL Net 0.96 0.95 0.96 0.95 1616
DistilBERT 0.96 0.96 0.96 0.96 806
GPT2 0.93 0.92 0.93 0.92 1526
Llama 2 - Zero-shot 0.41 0.86 0.71 0.74 -
[lama 2 - Few-Shot 0.73 0.88 0.97 0.90 -
GPT-3.5 0.64 0.89 0.89 0.86 -
GPT-4 0.74 0.88 0.97 0.91 -

Table 6: The Results of each LLM Model

20



Study Results

RQ4: LIME helped enhance understanding of model predictions for detecting usability

Issues In all classes.
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Fig. 3. LIME plot for predicting satisfaction class.

Figure 10: LIME Plot for Predicting Satisfaction Class
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Study Results

RQ4: LIME helped enhance understanding of model predictions for detecting usability
Issues in all classes.

Prediction probabilities NOT Effectiveness Effectiveness

crashes
Satisfaction [ 1.00 ——

Effectiveness 1.00 SOIg;N.
Efficiency _ 1.00 frustrated

0.0sH

I
0.01

m
0.01

Text with highlighted words

This app is very slow and always crashes. I'm frustrated.

and
001

very
0.01
This
0.00
always
[0.00

app
0.00

Fig. 4. LIME plot for predicting effectiveness Class.

Figure 13: LIME Plot for Predicting Effectiveness Class
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Study Results

RQ4: LIME helped enhance understanding of model predictions for detecting usability
Issues in all classes.
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Fig. 5. LIME plot for predicting efficiency class.

Figure 14: LIME Plot for Predicting Efficiency Class 53



Discussion and threats to validity
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Discussion

Accuracy of Models Predictive Reliability

Enhancement of Performance of Pre-trained

Model Interpretability Models
== . .
Model Training Efficiency f) Real-world Applications of
These Models
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Threats to validity

|/ Internal Validity

Model Overfitting &

Parameter Tuning m

7' External Validity

=
Dataset Specificity g ]‘ =

Language Bias ﬂ
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Conclusion and Future Work

Demonstrated the significant role and effectiveness of LLMs in analyzing
mobile apps usability to improve the UX

Found that fine-tuned models, specifically ROBERTa, XLNet, and DistiIBERT,
outperformed others, including pre-trained models like GPT-3.5, GPT-4, and
Llama 2, in detecting usability issues from user reviews

Applied LIME for model interpretability, enhancing transparency and
trustworthiness of fine-tuned models

Future research will focus on applying these findings in a specific domain to
deeply investigate usability and user experience (UX) of mobile app
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