A Numerical Investigation of Rider Injury Risks From Falling off an E-scooter
Dr. Costin Untaroiu is currently an Associate Professor of Biomedical Engineering & Mechanics at Virginia Tech. Dr. Untaroiu has a vast experience in the field of Computational Mechanics and Biomechanics. He is co-author of more than 80 peer reviewed journal papers and more than 100 conference papers. Dr. Untaroiu has extensive experience in rigid-body and finite-element modeling, including probabilistic models. He is also a Fellow of ASME.

Education
PhD, Mech. & Aero. Engineering, Univ. of Virginia May 2005
Diploma (BS & MSc) Applied Mathematics: Solid Mechanics May 1996
University of Bucharest, Romania
Diploma (BS & MSc) Mechanical Engineering May 1990
“Politehnica” University of Bucharest, Romania

Professional Experience
Associate Professor of Biomedical Engineering 2015-present
Research Associate Professor 2011-2015
Virginia Tech and Wake Forest University
Research Assistant Professor 2008-2011, Univ. of Virginia
Table of Contents

1. Introduction
2. Methods
3. Impact simulations
4. Results & Discussion
5. Conclusion
1. Introduction

- Head and limbs most frequently injured regions [1]
- Fractures/dislocations and contusions are the most common types of injuries [1]
- Most e-scooter crashes are caused by falls

Data taken from Aizpuru et al. [1]
2. Methods: FE setup of Scooter Accident Simulation

• Dummy model used was of a standing 50% male Hybrid III dummy (78.1 kg, 1700 mm height). The FE model contained 4,301 elements and 7,355 nodes (LSTC/Ansys model).

• Flat ground created
 • Deformable top layer
 • Concrete material
 • Rigid bottom layer created to keep top layer stationary

• A stopper placed in path of scooter
2. Methods: Geometry Reconstruction & Meshing

Ninebot KickScooter
MAX electric scooter
(Spin, San Francisco, CA, USA)

FARO laser scanner system (Point clouds) → Rhino 3D (NURBS surfaces) → HyperMesh (model mesh)
2. Methods: Calibration of HIII FE Model

• Several tests were simulated and used to calibrate the HIII model

- Head drop test
 - HIII head model
 - 2.716 m/s
 - Fixed rigid

- Thorax Impact Test
 - 6.7 m/s

- Knee Impact Test
 - 2.1 m/s
 - 24°

- Neck Pendulum extension/flexion Tests
3. H III Calibration Example: Head and Thorax Calibration

Head Calibration

![Head Calibration Graph](image1)

- Original Head
- Calibrated Head

Thorax Calibration

![Thorax Calibration Graph](image2)

- Chest Calibrated
- Chest Original

![Force vs Time Graph for Thorax Calibration](image3)
3. Impact Simulations: Impact variables tested

- Stopper height
 - 52 mm
 - 101 mm
 - 152 mm

- Approach angle
 - 30°
 - 45°
 - 60°

- Impact speed
 - 3.2 m/s
 - 4.48 m/s
 - 11.16 m/s
3. Impact Simulations: Arm activation

- Arm activation added to all head-on collisions
- Accomplished by loading the shoulder and elbow joints
- Ran a total of 45 e-scooter crash simulations

a) No arm activation

a) Arm activation included
3. Impact Simulations: Injury Risks Calculation

- Injury metrics extracted from simulations
 - Head injury criteria (HIC)
 - Neck injury criteria \(N_{ij} \)
 - Chest Deflection
 - Maximum femur force

- Used to calculate Rider Injury Measure (RIM)

\[
RIM_{AIS3+} = 1 - (1 - P_{HIC}) \times \left(1 - P_{N_{ij}}\right) \times (1 - P_{\text{chest}}) \times (1 - P_{\text{femur}})
\]
3. Impact Simulations: Statistical Analysis

- Correlation coefficients measured the relationship between pre-impact variables and injury risks

- Sobol’s global sensitivities compared the effect of each pre-impact variable

- Student t-tests determined if arm activation caused any significant changes to injury risks
4. Results & Discussion: Injury Metrics

- About half of all neck and head injury risks were higher than 25%.

- 4 of the 5 lowest RIM scores occurred in simulations using smaller approach angles.

- Nearly all simulations with RIM scores of 1 occurred during head-on collisions.
4. Results & Discussion: Approach Angle

- The approach angle had strong positive correlations with head, neck, chest, and overall injury risks
- E-scooter impacting a 52 mm stopper at 11.16 m/s
 - Head-on collision
 - 30° approach angle
4. Results & Discussion: Impact Speed

- The impact speed had small negative correlations with RIM and chest injury and small positive correlations with head, neck, and chest injury risks.
- E-scooter impacting a 52 mm stopper with a 90° approach angle:
 - 3.2 m/s impact speed
 - 11.16 m/s impact speed
4. Results & Discussion: Stopper Height

- Stopper height had the lowest contribution to injury risk
- E-scooter impacting a stopper with a 90° approach angle at 3.2 m/s
 - 52 mm stopper
 - 152 mm stopper
4. Results & Discussion: Correlation Coefficients and Global Sensitivities

Correlation Coefficients

- **Impact angle**
- **Impact speed**
- **Stopper height**

Global Sensitivities

- **Impact angle**
- **Impact speed**
- **Stopper height**
4. Results & Discussion: Arm Activation

- Reduced RIM scores were reduced in two-thirds of the head-on crash simulations.
- Arm activation had a statistically significant effect on neck injury risk ($p=0.042$).
- E-scooter impacting a 52 mm stopper at a speed of 3.2 m/s.
4. Results & Discussion: Key points

• Key conclusions
 • The approach angle had the greatest impact on injury risk
 • The impact speed had a negative correlation with injury risks for small angles of approach
 • Overall arm activation did reduce RIM scores

• Limitations
 • Limited selection of injury measures
 • Coarse HIII dummy model
5. Conclusions

• Risks of serious injury were greatest for the head and neck regions
 • Corroborated by experimental data [2]

• A future study will look at impacts involving a collisions with vehicles

• This study showed a higher risk of serious injury than observed in hospitals
6. Acknowledgements

- This project was funded in part by the Safety through Disruption (Safe-D) National University Transportation Center (UTC), a grant from the U.S. Department of Transportation – Office of the Assistant Secretary for Research and Technology, University Transportation Centers Program.
7. References
