

Federated Monocular 3D Object Detection for Autonomous Driving

Department of Electrical and Computer Engineering University of British Columbia

Fangyuan Chi(fangchi@ece.ubc.ca), Yixiao Wang, Panos Nasiopoulos, Victor C.M. Leung, Mahsa T. Pourazad

Fangyuan Chi

She received the B.A.Sc and M.A.Sc. degree in computer engineering from the University of British Columbia in 2012 and 2015 respectively.

In 2020, she joined, as a Ph.D student, the Digital Multimedia Lab research group at the Electrical and Computer Engineering department, University of British Columbia, Canada.

Her research area mainly focuses on computer vision, vehicle-to-everything communication, and decision making in cooperative autonomous driving

3D Object Detection: critical for autonomous driving, detect both classes and depth

Monocular 3D Object Detection: use camera to establish 3D representation of surroundings

Rich attributes, beyond geometry

Affordable for all vehicles

Existing Training Method: offline centralized training with large scale dataset

Existing Training Method: offline centralized training with large scale dataset Challenge: How to collect a large amount of data across different areas and evolving scenarios

Our proposed method: leverage federated learning for distributed and continuous learning

Digital Multimedia Our Method: Local 3D Monocular Object Detection

The proposed system architecture

Digital Multimedia Our Method: Model Collection and Federated Average

2.

The proposed system architecture

- 1. Receiving $\omega_t^1 \dots \omega_t^k$ from K vehicles Updating global model parameters:
 - $W_{t+1} \leftarrow \sum_{k=1}^{k} \frac{n_k}{n} \omega_t^k$

Our Method: Global Model Distribution

The proposed system architecture

- 1. Receiving W_{t+1} from the cloud server
- 2. Updating local model parameters:

 $\omega_t^i \leftarrow W_{t+1}$

Evaluation

Evaluation Setup

. Digital Multimedia

Real-word Dataset: nuScenes

1,200,000 camera images captured from **1000 scenes**, **23 annotated object classes** including vehicles, pedestrians, etc.

Simulated Autonomous Vehicles

We split the dataset into **10 parts** to simulate that we have **10 autonomous vehicles** participating in the federated learning process

Training Process

We train the model for **12 epochs** at a batch size of **4**. At the end of each epoch, the model parameters from each vehicle we be averaged

Evaluation

Evaluation Metrics

NuScenes Detection Score (NDS):

The NDS metric is specific to the nuScenes dataset, and measures the overall performance of the model in terms of both precision and recall.

Digital Multimedia Lab

Evaluation

Evaluation Metrics

Mean Average Precision (mAP):

Measures the average precision of the model across all classes and all thresholds.

Calculated by averaging the precision of the model at different recall levels

$$mAP = \frac{1}{n} \sum_{k=1}^{k=n} AP_k$$
 where

n = the number of classes AP_k = the average precision of class k

Evaluation Results

mAP

NDS

Method	Backbone	Data Ratio	NDS	mAP
Baseline	ResNet101	10%	0.187	0.110
Ours	ResNet101	10%	0.264(+41.18%)	0.187(+70%)

Summary

Integrate federated learning with 3D monocular object detection

- Enable continuous learning with large scale dataset from evolving driving scenarios
- Improve detection accuracy and robustness

