Air Trappic Management Security: ADS-Bas an Example

Dr. Thabet Kacem Email: thabet.kacem@udc.edu

Dr. Thabet Kacem

Education:

- January 2010: Master in Computer Science, University of the District of Columbia
- May 2016: PhD in Information Technology, George Mason University

Appointments:

- 2016–2022: Tenure–track assistant professor of Computer Science at the University of the District of Columbia
- 2022–Present: Tenured associate professor of Computer Science at University of the District of Columbia
- 2022-Present: Affiliate Faculty at the C4I Center at George Mason University

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

Research Interests & Vision

Research Vision

Cont'd

"Intelligent Transportation Systems (ITS) apply a variety of technologies to monitor, evaluate, and manage transportation systems to enhance efficiency and safety", US DOT M : D = G = G = G

- Main Benefits of ITS:
- Safety
- Better Management
- Efficiency
- Cost Effectiveness

Cont'd

• <u>Research Vision</u>: How can we address the security concerns of ITSs so that they live up to their full potential of revolutionizing the human life quality?

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

Air Traffic Management Overview

Cont'd -NextGen Project

11

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

ADS-B Security Problem

Traditional Surveillance Technologies

Primary Surveillance Radar (PSR)
Secondary Surveillance Radar (SSR)

ADS-B advantages

- Better Accuracy
- Capability to be deployed in remote areas
- Less operational & maintenance Costs

Cont'd - How ADS-B Works

Cont'd - ADS-B Message Format

ADS-B			Preamble (8 bits)	DF (5 bits)	Capability (3 bits)	ICAO Address (24 bits)	Payload (56 bits)	Parity Pl (24 bits)	
	Mode S-ES								
Mode A Mode C ATCRBS	Mode S	UAT			Type (8 bits)	Altitude (12 bits)	T F (1 bit) (1 bit	Latitude) (17 bits)	Longitude (17 bits)

Cont'd - ADS-B Threat Model

- Types of Attacks:
 - Eavesdropping
 - GPS Spoofing
 - Jamming
 - Replay Attacks
 - Ghost Aircraft Injection
 - Multiple Ghost Aircraft Injection

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

Related Work

Cryptographic Approaches

- Rationale: Add digital signature data in extra ADS-B messages
 - Pan et al
 - Yang et al
- Weakness: not scalable and may increase error rate, and may require changing the message format

Artificial Intelligence Approaches

- Rationale: Use machine learning and/or deep learning classifiers
 - Ying et al
 - Habler and Shabtai
- Weakness: these approaches are not preventive, not much insight on the type of the attacks

- Rationale: Use the time difference of arrivals from nearby aircraft
 - Strohmeier et al
 - Kaune et al
- Weakness: requires several multilateration stations, no message attribution

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

ADS-Bsec Framework - Overview

20

ADS-Bsec - Secure Message Generator

<u>Rationale:</u> Replace the Cycle Redundancy Check (CRC) field with a security metadata based on Keyed Hash Message Authenticated Code (HMAC)

- This is a software change that does not require any hardware change
- There is no need for an ADS-B message format modification
- The power of the HMAC lies mainly in the length of the key
- No need for sending extra data that harm the scalability of the approach

Two variants of the secure message generator:

- Version 1: ADS-B Out only
- Version 2: Both ADS-B Out and ADS-B In

Cont'd – Version 1

Cont'd - Version 2

ADS-Bsec - Security Analysis Module

ADS-Bsec - Key Management Module

Rationale:

- PKI schemes are difficult to deploy to share ADS-B keys mainly due to trust issues
- Symmetric keys are more adequate
- Delegate the initial key distribution to the ATC Center of departure

Key Exchange Constraints:

- Ideal flight conditions
- Unforeseen flight changes
- ADS-B Out vs ADS-B In and ADS-B Out

Cont'd – Ideal Flight Conditions

Cont'd – Unjoreseen Flight Changes

Cont'd - Key Exchange for ADS-B In and ADS-B Out

- Rationale:
 - Nearby aircraft, equipped with ADS-B In, receive ADS-B messages from each other
 - All aircraft in a given zone generate their security metadata using a group key that is generated from seed keys
- The granularity of the groups are inspired from the airspace subdivision by the authorities (e.g. Flight Information Regions)
- Group keys need to be updated every time a member joins or leaves the group
- Each day is subdivided into time intervals depending on the frequency of aircraft in that zone
 - Seeds are generated in μ Tesla-like fashion

Cont'd

ADS-Bsec - ML Classifier

ADS-Bsec - Radio-Location Module

Cont'd - Computing the TODT

$$\tau_n = t_n + p_n$$

$$t_n = \frac{\sqrt{(x_n - x_E)^2 + (y_n - y_E)^2 + (z_n - z_E)^2}}{C}$$

$$\tau_i - \tau_j = (t_i - t_j) + (p_i - p_j)$$

$$\tau_i - \tau_j = t_i - t_j + \mathcal{N}(0, 2\sigma^2)$$

Cont'd – Detecting bogus ADS-B Messages

Al	gorithm: Detection of Bogus ADS-B Messages					
1 I	1 Initialize arrays to store the Cartesian coordinates of both					
	the MLAT sensors and the emitters;					
2 while t < endTime do						
3	Store the coordinates of each emitter in its					
	corresponding array;					
4	Run the multilateration algorithm to determine the					
	location of the emitter based on the collected TDOT					
	values;					
5	Apply Kalman Filter to improve the location					
	estimation;					
6	Compute the horizontal difference h_{Diff} between the					
	estimated and reported position;					
7	if h_{Diff} <threshold th="" then<=""></threshold>					
8	ADS-B message is valid					
9	else					
10	ADS-B message is malicious					

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

Evaluation Results

- Crypto Module
- Measure the sending time and receiving time of secure ADS-B messages
- Compare the overhead of the added security vs the original protocol
- Study the effect of the implementation of the Key Management Module

Al Module

- Measure the classification accuracy,
 Comparing TDOT vs TDOA sensitivity and specificity of the ML • Location estimation using TDOT classifier
- Compare the classification scores of the original vs modified datasets

Location Verification

- Detecting malicious ADS-B messages

Cont'd - Crypto-Module Evaluation

Cont'd – Sending Time

Cont'd - Receiving Time

Cont'd - Key Management

Sending Time with SHA1 and 128-bit key

Receiving Time with SHA1 and 128-bit key

Cont'd - Al Module Evaluation

CLASSIFICATION RESULTS WITH ORIGINAL DATASET.

Percentage	Classifier	CA	Sens	Spec
95-05	Dtree	0.96	0.69	0.92
95-05	SVM	0.97	0.51	0.92
95-05	RF	0.97	0.71	0.92
90-10	Dtree	0.95	0.68	0.92
90-10	SVM	0.94	0.49	0.92
90-10	RF	0.94	0.70	0.92
85-15	Dtree	0.92	0.61	0.92
85-15	SVM	0.91	0.50	0.91
85-15	RF	0.90	0.69	0.91

Percentage	Classifier	CA	Sens	Spec
95-05	Dtree	0.99	0.97	0.99
95-05	SVM	0.94	0.69	0.97
95-05	RF	0.99	0.97	0.99
90-10	Dtree	1.00	0.98	1.00
90-10	SVM	0.96	0.71	0.96
90-10	RF	0.99	0.97	0.99
85-15	Dtree	0.99	0.97	0.99
85-15	SVM	0.94	0.69	0.97
85-15	RF	0.99	0.97	0.99

Average Classification Score: Original dataset vs Modified dataset

Cont'd – Radio Location Module Evaluation

Effect of Kalman Filter on Location Estimation

Detecting Malicious ADS-B Messages

Outline

- Research Interests & Vision
- Air Traffic Management Overview
- ADS-B Security Problem
- Related Work
- ADS-Bsec Framework
- Evaluation Results
- Conclusion and Future Challenges

Conclusion

ADS-Bsec framework addresses the security problems of ADS-B from a holistic approach without altering the packet format or requiring new equipment

It combines novels cryptographic, artificial intelligence and location verification techniques to provide the integrity and authenticity of the ADS-B messages

The findings are supported by a set of experiments that assess the performance of the key modules of ADS-Bsec

Achievements

Patents

1. ADS-Bsec: A Holistic Framework to Secure ADS-B. US Patent Number 11/022/696.

Selected Conference Publications

- 1. Thabet Kacem, Alexandre Barreto, Duminda Wijesekra and Paulo Costa, "A Key Management Module for Secure ADS-B", 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC 2022), Macau, China, September 2022.
- 2. Thabet Kacem, Aydin Kaya, Ali Seydi Keceli, Cagatay Catal, Duminda Wijesekera and Pualo Costa, "ADS-B Attack Classification Using Machine Learning Techniques", 2021 IEEE Intelligent Vehicle Symposium (IV21), Workshop on Security Challenges in Intelligent Transportation Systems (SCITS) Workshop, Nagoya, Japan, September 2021.
- 3. Thabet Kacem, Alexandre Barreto Duminda Wijesekera, and Paulo Costa." Extending ADS-B for Mixed Urban Air Traffic". 37th AIAA/IEEE Digital Avionics Systems Conference (DASC 2018), London, UK, October 2018.
- 4. Thabet Kacem, Duminda Wijesekera and Paulo Costa, "Key Distribution Scheme for Aircraft Equipped with Secure ADS-B IN", 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC 2017), Yokohama, Japan, October 2017.
- 5. Thabet Kacem, Duminda Wijesekera, Paulo Costa and Alexandre Barreto, "Secure ADS-B Framework 'ADS-Bsec", 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 2016), Rio de Janeiro, Brazil, November 2016.
- 6. Thabet Kacem, Duminda Wijesekera, Paulo Costa and Alexandre Barreto, "An ADS-B Intrusion Detection System", The 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-16), Tianjin, China, August 2016.

- 7. Thabet Kacem, Duminda Wijesekera, Paulo Costa, Marcio Monteiro, Alexandre Barreto and Jeronymo Carvalho, "Secure ADS-B Design & Evaluation", IEEE International Conference on Vehicular Electronics and Safety (ICVES 2015), Yokohama, Japan, November 2015.
- 8. Thabet Kacem, Jeronymo Carvalho, Duminda Wijesekera, Paulo Costa, Marcio Monteiro and Alexandre Barreto, "Risk-adaptive Engine for Secure ADS-B Broadcasts", SAE 2015 AeroTech Congress & Exhibition (SAE AeroTech 2015), Seattle, WA, September 2015.
- 9. Marcio Monteiro, Alexandre Barreto, **Thabet Kacem**, Jeronymo Carvalho, Duminda Wijesekera and Paulo Costa, "Detecting Malicious ADS-B Broadcasts Using Wide Area Multilateration", The 34th Digital Avionics Systems Conference (DASC 2015), Prague, Czech Republic, September 2015.
- 10. Marcio Monteiro, Alexandre Barreto, **Thabet Kacem**, Duminda Wijesekera and Paulo Costa, "Detecting Malicious ADS-B Transmitters Using a Low-Bandwidth Sensor Network", The 18th International Conference on Information Fusion (Fusion 2015), Washington, DC, July 2015.
- 11. Thabet Kacem, Duminda Wijesekera, Paulo Costa, Jeronymo Carvalho, Marcio Monteiro and ALexandre Barreto, "Key Distribution Mechanism in Secure ADS-B Networks", Integrated Communication, Navigation and Surveillance Conference (ICNS 2015), Herndon, VA, April 2015.
- 12. Thabet Kacem, Duminda Wijesekera and Paulo Costa, "Integrity and Authenticity of ADS-B Radars", IEEE Aerospace Conference (AeroConf 2015), Big Sky, MT, March 2015.

Selected Journal Publications

- 1. Thabet Kacem, Duminda Wijesekera and Paulo Costa. "ADS-Bsec: A Holistic Approach to secure ADS-B". IEEE Transactions on Intelligent Vehicles, October 2018.
- 2. Thabet Kacem, Alexandre Barreto, Duminda Wijesekera and Paulo Costa, "ADS-Bsec: A novel framework to secure ADS-B". ICT Express, 2017, pp.160-163.

Future Challenges

Thank you very much

Backup Slides

Cont'd - Formal Key Exchange Protocol

Aircraft -	{Aircraft, FlightPath}SymKey	SourceATC		
SourceATC -	nc1, sid1, ps1	DestATC		
DestATC -	nc3, sid3, ps3	SourceATC		
DestATC	CERT(DestATC)	➤ SourceATC		
SourceATC	{pms1}pk(DestATC)			
SourceATC -	{msg1, hash(msg1)}ms1	DestATC		
	{msg2, hash(msg2)}ms1	 DestATC 		
DestATC -	(Aingraft ElightDath)mal	SourceATC		
SourceATC -	{Aircraft, FlightPath}ms1	DestATC		
DestATC -	{key2}ms1	SourceATC		
SourceATC -	nc2, sid2, ps2	<pre>TransitATC</pre>		
TransitATC	nc4, sid4, ps4	SourceATC		
TransitATC	CERT(TransitATC)	➤ SourceATC		
SourceATC	{pms2}pk(TransitATC)	TransitATC		
SourceATC -	{msg3, hash(msg3)}ms2	➤ TransitATC		
TransitATC -	{msg4, hash(msg4)}ms2	 SourceATC 		
SourceATC -	{Aircraft, FlightPath}ms2	TransitATC		
TransitATC -	{key3}ms2	 SourceATC 		
SourceATC -	{key1, key2, key3}SymKey Aircraft			
	Initial Key Exchar	nge Protoc		

Handshake between SourceATC and DestATC to exchange key to be used by aircraft using master key

Handshake between SourceATC and TransitATC to exchange key to be used by aircraft using master key

Aircraft changes flight path due to bad weather in the destination. Therefore, it needs to negotiate new key with the new destination

Aircraft changes flight path due to bad weather in the one of the transit zones. Therefore, it needs to negotiate new key with the new transit zone

Flight Change Key Echange Protocol

Cont'd - Key Management Module Class Diagram

Future Challenges – The Bigger Picture

Create a new research lab focusing on Intelligent Transportation Systems Security

- Aligned with GMU participation in CyManII and VA Cyber Initiative
- Promotion of MS and PhD theses
- Foster research collaboration between faculty members at GMU and beyond

Support the research with a proper educational foundation

- Develop new courses on:
 - ITS Security
 - Critical Infrastructure Security
 - Smart Cities Security

Apply for research Grants. Some potential programs include:

- DOT: University Transportation Centers (UTC) Competition
- FAA: Aviation Research Grants Program
- NSF: SaTC, CPS, S&CC