Parametric Study of Pre - Crash Vehicle Maneuvers and Occupant Safety Performance Response

Prof. Costin Untaroiu (costin@vt.edu) Dept. of Biomedical Eng. and Mechanics, Virginia Tech

VZ | Prof. Costin Untaroiu

Education

PhD, Mech. & Aero. Engineering, Univ. of Virginia May 2005 Diploma (BS & MSc) Applied Mathematics: Solid Mechanics May 1996 University of Bucharest, Romania Diploma (BS & MSc) Mechanical Engineering May 1990 "Politehnica" University of Bucharest, Romania

Professional Experience

Associate Professor of Biomedical Engineering 2015-present Research Associate Professor 2011-2015 Virginia Tech and Wake Forest University Research Assistant Professor 2008-2011, Univ. of Virginia

Dr. Costin Untaroiu is currently an Associate Professor of Biomedical Engineering & Mechanics at Virginia Tech. Dr. Untaroiu has a vast experience in the field of Computational Mechanics and Biomechanics. He is co-author of more than 80 peer reviewed journal papers and more than 100 conference papers. Dr. Untaroiu has extensive experience in rigid-body and finite-element modeling, including probabilistic models. He is also a Fellow of ASME.

♥// Prof. Costin Untaroiu

Research Interests

Finite Element Optimization/Probabilistic Design Applications of Pattern recognition techniques Crashworthiness simulations Restraint performance and optimization for impact mitigation Injury biomechanics esp. lower limb trauma

Current Projects

- Model Capability to Quantify Injury Risk for eVTOL Vehicles NASA
- Assessment, Evaluation, and Approaches to Modifications of FMVSS that may Impact Compliance of Innovative New Vehicle Designs Associated with Automated Driving NHTSA
- GHBMC Center of Expertise in Full Body Models Phase III GHBMC
- Characterization and Modeling of Different Snow Attributes for Tire Performance Simulation-CenTiRE
- Characterization and Modeling of Deformable Soils for Tire Performance Simulation CenTiRe

Maneuvers

- During an autonomous emergency braking (AEB) maneuver, the occupants change their posture, position, and velocity relative to the car interior and restraint systems¹
- The level of muscle contraction has been identified as a significant factor to determine the forward displacement of volunteers subjected to braking pulses².

 occupant kinematics during pre-crash influences the occupant interaction with restraint systems and the resulting injury measures³.

[1] Carlsson & Davidsson 2011
 [2] Ejima et al 2009
 [3] Antona et al. 2011

Occupant posture changes during braking.

$V_{\mathbb{Z}}$ Introduction: Crash FE simulation

• Classical FE Crash simulation – in the passive safety area (without pre-crash)

t= 0 ms (crash starts)

• New FE Crash simulation in the active and pre-triggered passive area (with

pre-crash)^{1,2}

$$t < t_a$$
 ($t_a \sim -1500/-2000 ms$)

t= 0 ms (crash starts)

[1] Ghosh et al 2015[2] Öztürk et al 2019

VZ Introduction: The Objective

• Develop a tool to reduce the computational effort of simulating both pre-crash and in-crash FE simulations.

• Investigate the influence of passengers' pre-crash maneuvers on injury response in a frontal crash scenario.

 Perform a parametric study to study the influence of Seat characteristics and Occupant Anthropometry/Age

√ √ / Methods: Design of Experiments (DOE)

Occupant characteristics¹ (12 models) Seat Characteristics

O Age: 2 levels (20 year-old and 70 year-old) O BMI 2 levels (25 and 40) O Stature & Sex 3 levels (F05, M50, M95) O Seat Track :2 levels O Seat recline angle: 2 levels O Seat cushion angle: 2 levels

Pre-Crash Maneuvers²

O Breaking/ Turn-and-brake:2 levels

Full-Factorial DOE: 12 x 2 x 2 x 2 x 2 = 196 simulations

Reduced Factorial DOE (Latin Hypercube sampling: 56 simulations

[1] Hu et al 2019[2] Hu et al 2020

Methods: Pre-Crash Simulations -Challenges

Head excursion of passive and active GHBMCsi-pre (M50) model in pre-crash simulations

- Computational cost of running long pre-crash simulations
 - use separate FE models for pre-crash (simplified) and in-crash (detailed)
- Introduce muscle activation during pre-crash
 - An active rigid human model (GHBMCsi-pre¹) was calibrated to volunteer sled test kinematic
- Integrate the output of pre-cash human model with incrash human model
 - Develop a switch algorithm: a segmentation approach for transferring pre-crash kinematics.

Methods: Switch algorithm: Data transfer from Pre-crash to In-crash

Body regions/segments
Head
Neck
Upper extremity - Left
Thorax - Axial
Upper extremity - Right
Abdomen
Lower extremity - Left
Pelvis
Lower extremity - Right

[1] Hu et al 2019

Methods: Switch algorithm: GHBMC In-

Methods: Pre-Crash Simulations with GHBMCsi-pre^{1,2}

Pre-crash brake:

At the end of pre-crash brake: 56 km/h

[1] Hu et al 2019 [2] Hu et al 2020

Pre-crash Turn-and-brake:

Drop in X - velocity ~ 16.02 m/s (57.67 km/h) Drop in X - velocity ~ 15.4 m/s (55.44 km/h) **Drop in Y - velocity** ~ 11.5 m/s (41.4 km/h) At the end of pre-crash brake: 56 km/h

-30

-40

0

20

40

60

80

Time (ms)

100

120

140

12

Methods: In-Crash Simulations with integrated pre-crash dynamics

-30

-40 +

Time (ms)

Acceleration pulse for in-crash simulations (56 km/h)

Without Precrash (Standard position)

With Precrash (After braking)

Results: Classical approach vs. New Approach with integrated pre-crash dynamics

Nith Precrash After braking)

t = 0 ms

a)

<u>*t* = 45 ms</u>

t = 70 *m*s

d)

t = 100 *m*s

Crash Scenario	Injury Metrics							
	HIC15	BrIC	Nij	Chest Deflection (mm)	VC_max	Femur Force (N)		
Without Precrash	559	0.58	0.00043	58	0.00	2696		
With Precrash - Brake	208	0.52	0.00023	41	0.00	1724		
With Precrash - Turn and Brake	431	0.52	0.00036	57	0.00	1947		

♥/// Results: Injury Criteria

Chest Deflection

Male 50th Percentile

	Injury Metrics							
Crash Scenario	HIC ₁₅	BrIC	N _{ij}	Chest Deflection (mm)	VC _{max}	Femur Force (N)		
Without Precrash	559	0.58	0.43	58	0.00	2696		
With Precrash - Brake	208	0.52	0.23	41	0.00	1724		

₩*7*/ Results: Our results vs. the literature

[1] Yamada et al. 2016

17

♥Z | Results: DOE Preliminary results

- Head injuries (HIC) are most sensitive to <u>Seat Recline Angle</u> and <u>Seat Track position.</u>
- Both the seat characteristics change the position of head with respect to the airbag significantly
- This influences the interaction timing and duration of the **head impact** with **the passenger airbag**.

Sensitivities Plot for and HIC 15 and BrIC

♥/// Results: DOE Preliminary results

- Head most sensitive to <u>Seat Track position</u> and <u>Seat Recline Angle</u>.
- Brain most sensitive to <u>Maneuver type</u>, <u>Human</u> <u>Size</u> and location of seat track.
- **Neck** highly sensitive to <u>Maneuver type</u> and <u>Seat</u> <u>Recline Angle.</u>
- **Thorax** significantly sensitive to <u>BMI</u> and <u>Seat</u> <u>Track position</u>.
- Abdomen risks were negligible but most sensitive to <u>Human Size</u>, <u>Seat Recline Angle</u> and <u>Maneuver</u> <u>types</u>.
- Femur was most sensitive to Human Size.
- Larger risks associated with <u>Seat Recline Angle</u>, <u>Seat</u> <u>Track position</u>, <u>Human Size</u>, and <u>Maneuver type</u>
- <u>Seat Cushion Angle</u> and <u>Age</u> had smallest influence.

Global sensitivity analysis

VZ | Results/Discussion: Limitations

- The pre-crash models were calibrated using optimization only in terms of the time histories of head excursion
- The developed switching algorithm does not transfer the stress/strain from pre-crash phase to in crash phase
- The "young" and "old" GHBMC have different geometries, but they shared the same material properties
- The statistical results depends on the chosen ranges of the variables (and DOE scheme)

Acknowledgements

- Thanks to the NHTSA for funding this study and ZF for help on debugging the airbag passenger airbag model.
- My graduate students : Akshay Dahiya and Yunzhu Meng

Thank You

