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The PEGASUS Family focuses on development / testing 

methods and tools for AD systems on highways 

and in urban environments

5

VVMethoden PEGASUS Family – Publicly-funded Projects in 

Germany 

VALID 2023

20192016

+ future projects of the PEGASUS Family

• Scope: Basic methodological framework

• Use-Case: L3/4 on highways

• Partners: 17

Time

PEGASUS
https://www.pegasusprojekt.de/en/home

SET Level 4to5

• Scope: Simulation platform, toolchains, 

definitions for simulation-based testing

• Use-Case: L4/5 in urban environments

• Partners: 20 partners

• Timeline: 03/2019 – 08/2022

VV-Methods

• Scope: Methods, toolchains, 

specifications for technical assurance

• Use-Case: L4/5 in urban environments

• Partners: 23 partners

• Timeline: 07/2019 – 06/2023

2023

https://www.pegasusprojekt.de/en/home
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VVMethoden – Project Setup

OEM

Tier-1

Eval

Science

Tech

Funded by Federal Ministry for Economic Affairs and Climate Actions  (BMWK)

Start - End 07/2019 - 12/2023 

Budget total 47M€

Objectives Development of methods and tools for the testing of highly automated and autonomous vehicles 

(SAE level 4/5) for homologation in urban environments

Partners

6VALID 2023

Continental Contribution Development of a In-Service Monitoring & Assessment System & prototype implementation 
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How can our AD 

System react to 

unexpected changes 

in such an complex 

and uncertain 

7

In-Service Monitoring - Motivation

How can our AD 

System react to 

unexpected changes 

in such an complex 

and uncertain 

environment ?

We should be able to 

monitor continuously 

rare new events and 

be able to adapt and 

Improve

To increase 

confidence in AD 

safety we need to 

drive many millions 

of kilometers.How 

can we achieve this 

challenge in cost 

efficient way ?

We should have an 

big vehicle fleet 

monitoring the safety 

performance + select 

situations which are 

needed for the 

validation 

In-Service Monitoring 

and Assessment

In-Service Monitoring 

and Assessment

VALID 2023
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Objective: Monitoring, Data Collection & Assessment of an AD Vehicle during operation

Monitoring

to ensure that all safety risk controls are effective throughout the product life cycle

and to identify and evaluate previously unknown unsafe events.

Data Collection 

for analysis purposes

Assessment 

to identify new safety risks

to modify ineffective safety risk controls 

..or to eliminate those that are no longer needed due to changes in the operational 

environment.
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Objectives 
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The Approach
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In-Service Monitoring and Assessment in the Context of DevOps
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Vehicle 

Operation

Record and

Upload DataValidation 

with Test Data

Update Vehicle
Analyse 

System Operation

Optimize 

System

In-Service

Monitoring

Data Ingest

Data Base

Simulation

Model Training

Real WorldEngineering World
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Related Work: Smart Monitoring

Smart data monitoring and Safety standards
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[24]
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Related Work: Smart Monitoring

Smart data monitoring and Safety standards
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Goal
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Related Work: Testing approaches

Major testing approaches motivates this work

15VALID 2023

› Scenario 

based 

testing[6]

› Virtual Assessment of Automation 

in Field Operation (VAAFO)[10]

› Shadow 

mode 

testing[7]
Database
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Smart Monitoring : Rule Based Approach

17VALID 2023

Pedestrian detection within defined ROI

Trigger with predicted trajectory
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Event Classification and Discovery [23, 19]

18VALID 2023

Anomaly- Camera jittering Anomaly – Camera falling Low visibility

Normal Driving Sudden breaking event Left turn Event: Camera view

Smart Monitoring : Data Driven Approach



Internal

Content 

19VALID 2023

1. Introduction

3. Related Work

4. Types of In-Service Monitoring and Assessment 

5.Examplary Trigger Development

5. Conclusion and Future Work

2. In-Service Monitoring Framework 



Internal

Data Preparation: 

Event class definitions (Weakly supervised approach) [23]

20VALID 2023

Stop: Speed below 2 m/s and stay for more than 5 sec Sudden Break: Speed drops suddenly
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Event Detection

21VALID 2023

• I/P - 16 frames/sample

• The original BDD100k dataset is 

grouped based on usecase using the 

sensor data  - Weakly Supervised 

Approach

• Available sensor data - GPS, 

accelerometer, gyroscope 

• 3D ResNet-34 trained on BDD100k 

dataset for Event Detection 

• 5 classes - Stop, Sudden Brake, Turn, 

Normal & Anomaly

Fig 1: Training pipeline for Event Detection 

Fig 2: Inference pipeline for Event Detection [23] 
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Results on Event Detection: 

BDD100k dataset

22VALID 2023

Fig 4: Video Sample - Sudden Brake Fig 5: Video Sample - Turn Fig 6: Video Sample - Anomaly

• Event Detection accuracy on the BDD100k val set 79.85%

• Weakly Supervised approch are less reliable
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Results on Event Detection: 

ADAS (Conti) data

23

• Event Detection accuracy on the ADAS val set 77.79%

• The real-world samples where the instances can have multiple class 

labels

• Model recognized few anomaly events such as, vibrations due to the 

unevenness of the road, low visibility, and blockage in the camera view

Fig 8: RGB frame in four video samples predicted as Anomaly event class in ADAS data

Fig 7: Confusion Matrix for Event 

Detection evaluated on ADAS data

VALID 2023
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Event Detection – Results comparison
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Generalized Category Discovery (GCD) [19]

25

Fig 11: GCD setting. Black data points represent unlabelled instances. 

Coloured data points represent labelled instances.

• Given a labelled and unlabelled set of images, the task is to categorize all images in the unlabelled set

• The unlabelled images may come from labelled classes or novel ones

VALID 2023
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Event Discovery Pipeline
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Results on Data for Event Discovery (BDD100k dataset)
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Fig 18: RGB frames from video samples predicted as group index 2 and group index 5

VALID 2023
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Results on Data for Event Discovery (BDD100k dataset)
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Fig 19. Video Sample: 

Group Index-2

Stop event

Fig 20. Video Sample: 

Group Index-5

Stop at traffic signal

Fig 21. Video Sample: 

Group Index-2

Finer Normal event

VALID 2023
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• The approach of In-Service Monitoring and Assessment is presented as a new method for safety validation 

of highly automated driving 

• State of the art works on verification and validation, different approaches for monitoring of HAD Systems 

during operation is covered and that motivates the presented exemplary trigger development. 

• Results are shown with both rule based, and data driven approach of triggers for Smart Monitoring to filter 

out anomaly & unknown events for self adaptive systems like HAD.

Our future works includes:

• Exploration of appropriate set of triggers, define suitable metrices for their evaluation and context specific

trigger subset selection for improving validation systems during operation.

• Use of safety critical data for continuous learning and model improvement is also a topic needs further

study.

Conclusion and Future works

30
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Thank you!

A project developed by the 

VDA Leitinitiative

autonomous and connected driving 

Rudra N. Hota
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