Ubicomm 2023 Sep. 2023, Porto

CRDT-based Collaborative Editing in OppNets: a Practical Experiment

Yves Mahéo Irisa, Université Bretagne Sud Vannes, France yves.maheo@univ-ubs.fr Frédéric Guidec

Irisa, Université Bretagne Sud Vannes, France frederic.guidec@univ-ubs.fr Camille Noûs

Laboratoire Cogitamus Vannes, France camille.nous@cogitamus.fr

Opportunistic Networks (OppNets)

- Characteristics
 - Mobile nodes with often unpredictable mobility
 - Device-to-device communication (short-range radio)
 - Sparse and/or irregular spatial distribution of the nodes
- Challenge of network-wide communication
 - Absence of continuous end-to-end connectivity
 - Network partitioned in "islands" with fluctuating boundaries

Opportunistic Networks (OppNets)

- Exploiting the mobility to communicate: the "store, carry, and forward" principle Each mobile node can...
 - store messages for a while
 - carry these messages while moving around
 - forward these messages to neighbor nodes whenever possible
- Main research activity in OppNets
 - Development of routing/forwarding algorithm
 - Hypotheses
 - Neeed for network-wide message passing (point-to-point or dissemination)
 - Need of message-oriented API

Yet, possible alternative based on shared data structures

Conflict-free Replicated DataTypes

- Target sharing of data structures in distributed environments
 - Support optimistic replication (eventual consistency)
 - Independent local updates + asynchronous synchronization
- Strong theoretical background for several data types (counters, registers, sets, maps, lists, graphs...)
 - Specific update operations
 - Concurrency semantics
- Example : Add-wins sets

Synchronization of CRDTs

- CRDTs typically deployed in Internet-based P2P or cloud-based networks
 - *Operation-based CRDTs*: broadcast each update to all other replicas (requires reliable broadcast)
 - State-based CRDTs: each replica periodically synchronizes with another randomly-selected replica
- Synchronization in OppNets studied in previous simulations
 - Operation-based: needs epidemic dissemination
 - too many small messages
 - State-based: synchronization with (temporary) neighbors
 - no routing required but large amount of data (full states) transmitted
 - A variant of state-based is the best compromise: delta-state-based synchro.
 - exchange of digests (typically state vectors) to determine the minimum amount of data to transmit
- Practical use of CRDTs in OppNets still to be demonstrated

Experimenting a CRDT-based application for OppNets

- Choice of application : collaborative edition of a document
 - Demanding application: respect of the causality of operations not trivial
 - Meaningful at small scale
 - Some of the needed buildings blocks already available
- Setting
 - Several contributors to a unique document, during several days
 - Laptops synchronize only when next to each other
 - via wireless D2D transmissions
 - The contributors move
 - their laptops are then switched off

Design and implementation

- Global architecture
 - Web-based application
 - Reuse of existing blocks
 - Text editor: Quill (HTML/CSS/Javascript)
 - Text CRDT implementation: Yjs (Javascript)
 - Development of dedicated software
 - Opportunistic communication layer
 - Yjs provider dedicated to OppNets

Design and implementation

- Opportunistic communication
 - Neighbor discovery
 - UDP Multicast
 - Synchronization (between two neighbors)
 - TCP session with TLS encryption
- Yjs provider dedicated to OppNets (opp-provider)
 - Ensures CRDT synchronization
 - When a user modifies the text: broadcast of the update
 - When two neighbors get in contact: delta-state synchronization
 - exchange of state vectors + exchange of delta states

Experiment

- Collaborative editing of a research report
 - 9 days
 - 6 contributors identified by their initials (PL, YM, FL, LT, NLS, FG)
- Laptop configuration
 - Wi-Fi dongle dedicated to the experiment
 - Systemd service for the opportunistic commuication layer
 - Web browser with local server for Quill editor/Yjs CRDT/opp-provider
 - Log for collecting results

Results: activity

• Editing stats

Size of the final document	102651 characters (36 pages)
Nb. of editing events	114 612 "ins", 6 821 "del", 104 "cut", 81 "paste"
Nb. of synchronizations upon radio contact	109
Nb. of updates transferred during radio contacts	102 561

Results: synchronization

• Size of the messages carrying state vectors and delta-states

• Size of update messages

Results: convergence

Conclusion

- Original real-life experiment of collaborative editing based on CRDT on an OppNet
 - Off-the-shelf text editor + CRDT implementation
 - Dedicated software for the synchronization of replicas
- Main outcome of the experiment: demonstration of the feasibility of the approach
 - Realistic conditions (mobility + editing actions)
 - Final convergence / bearable temporary divergences
- In OppNets, the use of CRDT can be a good alternative to network-wide message routing
 - Higher level of programming abstraction for developers