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Classification Problems are 

Ubiquitous

Many classifiers are applied to the same 

object

Many objects are being classified
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Classification Problems are 

Pervasive in Business

 Should we adopt this advertising channel or 

not?

 Should we include this particular product in our 

promotion this month?

 Should we offer employment to this applicant?
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Employee Performance Appraisal: 

multiple assessors of multiple 

employees

Employee 1 

Manager 1

Acceptable
Not 

Acceptable
Acceptable

Acceptable ……

……
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Manager 2 Manager 3

Employee 2 

Employee N 

……

Not 

Acceptable
Acceptable



Medical Treatment: multiple 

physicians assessing multiple 

patients

Patient 1 

Physician 1

Invasive 

operation
No surgery No surgery

Invasive 

operation
……

……
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Physician 2 Physician 3

Patient 2 

Patient N 

……

No Surgery No surgery



One-Dimension Random 

Walk
 Task i

• corresponds to object i
 Predictor j 

• corresponds to classifier j

 A set of classification labels Zij, where 

−1

Zij = 
+1   

is a binary label taking on the values +1 or -1.

 A +1 classification label can be regarded as 

taking a step to the right, while a -1 label can 

be regarded as taking a step to the left 
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Displacement of the 

Random Walk
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From the set of independent identically distributed

random variables {𝑍𝑖𝑗}𝑗>0 with

ℙ 𝑍𝑖𝑗 = +1 = 𝑝𝑗

ℙ 𝑍𝑖𝑗 = −1 = 𝑞𝑗

where pj + qj = 1, the displacement of the random walk

after n steps, which corresponds to the outcome of n

cumulative classification results, for a given task i is

given by

𝑋𝑖𝑛 =

𝑗=1

𝑛

𝑍𝑖𝑗

where it is assumed that 𝑋𝑖0 = 0.



Ground Truth 9

 For a total of M tasks (M random walks), we 

want to determine the error of the ground 

truth vector of the problem

𝒈 =

𝑔1
𝑔2
…
…
𝑔𝑀

where the elements gi can take on the value 

+1 or -1



Naïve Bayes 10

 We adopt 

the Naïve 

Bayes 

property that 

the 

predictors 

are 

independent



Predicted Class 11

 For task i, we assume that a fixed number of classifiers ni are used

to complete the classification task, after which majority voting

determines the class

 ni is normally assumed to be odd to avoid an equal number of votes

for each class being received

 ni steps are taken

 ni can be regarded as a constraint placed on the budget

 the total budget for the M tasks is n1 + n2 + … + nM

 Denote by ො𝑔𝑖 the predicted class for task i, and by

ෝ𝒈 =

ො𝑔1
ො𝑔2
…
…
ො𝑔𝑀

the predicted class vector



Majority Vote as Random Walk 
Displacement

12

For any given task i,

(i) the ground truth for the task is −1 when qi > pi, and

(ii) the ground truth for the task is +1 when pi > qi.

Proof:

Taking expectations of the net displacement

𝐸(𝑋𝑖𝑛) =

𝑗=1

𝑛

𝐸 𝑍𝑖𝑗 = 

𝑗=1

𝑛

𝑝𝑖 − 𝑞𝑖 = 𝑛 𝑝𝑖 − 𝑞𝑖

As 𝑛 → ∞, when qi > pi, the mean displacement will drift to −∞,

indicating the majority of the votes are for the class −1, which

completes the proof of (i). Similar argument applies to the case

qi < pi, resulting in the majority of the votes are for the class +1.

Majority Vote



Displacement Properties

Denoting 𝑋𝑖𝑛𝑖 by 𝑋𝑛𝑖, since 𝑋𝑛𝑖 is sufficient to

indicate that the task in question is task i, it

can be shown that

(i) For k an even integer,

ℙ 𝑋𝑛𝑖 = 𝑘 = 0.

(ii)For k an odd integer,

ℙ 𝑋𝑛𝑖 = 𝑘 =
𝑛𝑖

𝑛𝑖 + 𝑘
2

𝑝
𝑖

𝑛𝑖+𝑘
2 𝑞

𝑖

𝑛𝑖−𝑘
2
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Prediction Error 14

 A prediction error will result if pi > qi, yet the 

final position of the walk lands in the 

negative axis
 In the long run, if pi > qi, the net drift will be to the 

right and so the ground truth should be +1 

 A prediction error will result if qi > pi, yet the 

final position of the walk lands in the positive 

axis
 In the long run, if qi > pi, the net drift will be to the 

left and so the ground truth should be -1 



Probability of Prediction Error

ℙ ෝ𝒈 ≠ 𝒈 = 1 − ෑ

𝑗 𝜖 𝑃

{1 − 

𝑘 𝜖 Ω−

𝑛𝑗
𝑛𝑗 + |𝑘|

2

𝑝
𝑗

𝑛𝑗−|𝑘|

2 𝑞
𝑗

𝑛𝑗+|𝑘|

2 }ෑ

𝑖 𝜖 𝑄

{1 − 

𝑘 𝜖 Ω+

𝑛𝑖
𝑛𝑖 + 𝑘
2

𝑝
𝑖

𝑛𝑖+𝑘
2 𝑞

𝑖

𝑛𝑖−𝑘
2 } .
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where,

P is the set of indexes of tasks with ground truth equalled to +1,

Q is the set of indexes of tasks with ground truth equalled to −1,

Ω+ = {2𝑛 − 1}𝑛=1

𝑛𝑖−1

2 is the set of positive odd integers from 1 to ni (inclusive of 1 and ni),

Ω− = {1 − 2𝑛}𝑛=1

𝑛𝑖−1

2 is the set of negative odd integers from -1 to -nj (inclusive of -1 and -nj). 

By analyzing the random walk behaviour, the error 

probability can be shown to be



Exact and Approximate Error 
Bounds for Ground Truth Class -1

For any task i with a ground truth class of −1, we 

have

ℙ ො𝑔𝑖 ≠ 𝑔𝑖 ≤
𝑛𝑖
2

𝑛𝑖
𝑛𝑖 + (𝑛𝑖+1)𝑝𝑖

2

𝑝
𝑖

𝑛𝑖+ (𝑛𝑖+1)𝑝𝑖
2 𝑞

𝑖

𝑛𝑖− (𝑛𝑖+1)𝑝𝑖
2

and to simplify the above calculations, we can use the 

approximation

ℙ ො𝑔𝑖 ≠ 𝑔𝑖 ≲
Γ(𝑛𝑖 + 2)

2Γ(
𝑛𝑖(1 + 𝑝𝑖)

2
+ 1)Γ(

𝑛𝑖𝑞𝑖
2

+ 1)
𝑝
𝑖

𝑛𝑖(1+𝑝𝑖)
2 𝑞

𝑖

𝑛𝑖𝑞𝑖
2

where Γ(.) is the gamma function.
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Exact and Approximate 

Bounds for Ground Truth 
Class +1

For any task j with a ground truth class of +1, we

have

ℙ ො𝑔𝑗 ≠ 𝑔𝑗 ≤
𝑛𝑗

2

𝑛𝑗

𝑛𝑗 + (𝑛𝑗+1)𝑞𝑗
2

𝑝
𝑗

𝑛𝑗− (𝑛𝑗+1)𝑞𝑗
2 𝑞

𝑗

𝑛𝑗+ (𝑛𝑗+1)𝑞𝑗
2

and the corresponding approximation is

ℙ ො𝑔𝑗 ≠ 𝑔𝑗 ≲
Γ(𝑛𝑗 + 2)

2Γ(
𝑛𝑗(1 + 𝑞𝑗)

2
+ 1)Γ(

𝑛𝑗𝑝𝑗
2

+ 1)

𝑝
𝑗

𝑛𝑗𝑝𝑗
2 𝑞

𝑗

𝑛𝑗(1+𝑞𝑗)

2
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Random Walk Simulation 

Experiments
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Random Walks with Net Positive Drift



Random Walk Simulation 

Experiments
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Random Walks with Net Negative Drift



Comparison of Theoretical and 
Experimental Results

Each set of 

parameter 

settings are run 

100,000 times.

Observed 

absolute errors 

are < 2%

q p No. of 
classif-
iers n

No. of times 
landing  on 
+ve axis

Obs Freq
of Error

Th Freq

of 
Error

% Error 
Between 
Th & Obs

0.6 0.4 1 40100 0.401 0.400 0.25
0.6 0.4 3 35159 0.35159 0.352 -0.12
0.6 0.4 5 31720 0.3172 0.317 -0.08
0.6 0.4 7 28753 0.28753 0.290 -0.79
0.6 0.4 9 26883 0.26883 0.267 0.84
0.6 0.4 11 24391 0.24391 0.247 -1.06
0.6 0.4 13 22896 0.22896 0.229 0.05
0.6 0.4 15 21138 0.21138 0.213 -0.80
0.7 0.3 1 29874 0.29874 0.300 -0.42
0.7 0.3 3 21481 0.21481 0.216 -0.55
0.7 0.3 5 16362 0.16362 0.163 0.33
0.7 0.3 7 12620 0.1262 0.126 0.13
0.7 0.3 9 9886 0.09886 0.099 0.05
0.7 0.3 11 7909 0.07909 0.078 1.09
0.7 0.3 13 6328 0.06328 0.062 1.43

Observed Classification Errors and Comparison with Theoretical Results
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Summary and Conclusion

 Multiple classification problems are ubiquitous in business 
decision making

 Classification errors are unavoidable and cannot always be 
eliminated

 the occurrences of false positives and false negatives are 
common due to limited accuracies in the underlying classifiers

 In many practical situations, it is unrealistic to assume that 
absolute and objective ground truth classes are available

 the multiple classification problem is studied using the Naïve 
Bayes approach, where the ground truth is not absolute and is 
determined by the view of the majority of classifiers. 

21



Summary and Conclusion

 The penalty of misclassification is substantial and cannot 

be disregarded

 Ideally, all classifiers should applied to obtain a classification 

decision, but resource and time constraints often make this 

impractical, and classification decisions will have to be made 

within finite time points prior to fully exhaustive classification

 We make use of a random walk model to study the 

situation and have derived closed-form expressions for 

the probability of error as well as useful error bounds as a 

function of the budget constraint.
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Summary and Conclusion

 We find that by raising the budget, the probability of 

error in classification can be lowered

 the extent of the improvement can be suitably quantified 

and controlled  

 Extensive experiments have been performed

 the results of which show good agreement with the 

theoretical results
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Thank you!

24


