









### **Prof. Dr.-Ing. Oliver Michler**

Chair of Transport Systems Information Technology, Director Institute of Traffic Telematics Faculty of Transportation and Traffic Sciences "Friedrich List", Technical University of Dresden

# Potentials of directional antennas for (Indoor Positioning) Systems in dense multipath environments

The Fifteenth International Conference on Advances in Satellite and Space Communications (SPACOMM) 2023 April 24-28, 2023 – Venice, Italy

### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas General remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook









### 1 CV Oliver Michler, University Full Professor



| 1993 - 1997     | Scientific Staff and PhD-Research of TU Dresden, Faculty of Electrical and Computer Engineering                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------|
| 1997 – 2000     | Scientific Project manager at Video-Audio-Design GmbH as a Telkom-Partner                                         |
| 2000 – 2005     | Scientific Staff at Fraunhofer Institute for Transportation and Infrastructure Systems Dresden (FhG-IVI)          |
| 2005 – 2008     | Professor at University of Applied Sciences Dresden in Signal Processing and Electronic Measurement Techniques    |
| 2010 – 2017     | Head of department of TUD-Researchgroup at FhG-IVI                                                                |
| 2008 –          | Full Professor at TU Dresden in Systems Information<br>Technology, Faculty of Transportation and Traffic Sciences |
| 2019 -          | Director of TU Dresden of Institute of Traffic Telematics                                                         |
| 2017 -          | Scientific advisory board member of MRK AG, Metirionic and ISCons GmbH as a knowledge transfer research           |
| December tonics |                                                                                                                   |

### **Research topics**

data-driven and model-based approaches, wireless mobility systems over all traffic carriers and services, autonomous driving, intelligent vehicle, next generation technologies based of communication/localization/sensing, software defined radio







### 1 TU Dresden (TUD) ⇒ <u>Campus Overview</u>

- The Technische Universität Dresden dates back to the Technische Bildungsanstalt Dresden, founded in 1828 and, thus, ranks among the oldest technical-academic educational establishments in Germany.
- The TU Dresden has about 35.000 students and almost 5.000 permanent employees (excepting the Faculty of Medicine), about 400 professors among them, and, thus, is the largest university in Saxony, today.
- TU Dresden now is a multi-discipline university, also offering humanities and social sciences as well as medicine. There are only few universities in Germany which are able to match this broad scientific spectrum.

- Germany
- Saxony
- Dresden / Capital of Saxony:
   Dresden









# 1 University of Technology in Dresden (TUD) The "Friedrich List" Faculty of Transport and Traffic Sciences

### A unique, interdisciplinary competence center for transportation sciences

Dresden Institute of Automobile Engineering

Institute of Railway Vehicles and Railway Technology

Institute of Railway Systems and Public Transport



**Technological and Market Progress** in Transportation & Mobility



Changed Education in Transportation Economy and Transportation Engineering

Institute of Logistics and Aviation

Institute of Transport Planning and Road Traffic

Institute of Traffic Telematics

Institute of Transport and Economics









## 1 Faculty of Transportation and Traffic Sciences "Friedrich List" ⇒ Selected laboratories at the faculty

Laboratories Traffic Control, Process Automation and ITS



**Traffic Control Center** 



**Car2X-Wireless Simulation** 



**Automatic Train Driving** 



**Driving Simulation (Tram)** 



**Test Cars** 



**Automatic Car Driving** 







## 1 Faculty of Transportation and Traffic Sciences "Friedrich List" ⇒ <u>Selected laboratories at the faculty</u>

Aviation lab / Airbus 320 Simulator











Application / operation purpose

- Research fields: Trajectory Management and Safety Assessment
- Integration in teaching fields Cockpit Technologies and Navigation
- Training and performance / Aircraft wireless ICT Cabin







### 1 Traffic ICT and Research fields of Chair competence

Overview:











Simulation Emulation Radio planning



Lab Environment
Experimental Vehicles
Test fields



Big data
Statistics
Methodology
Procedures















### 1 Research focus: Traffic carrier cross-modal vehicle environment signals

### **Telematics and IT - Platforms** (RF, LF, Software, Protocols, Interfaces, HMI)



**Modelling, Parametrisation** 



**Error analysis, Integrity** 



Radio channel simulation (PC environment)



Signal environment generation (Lab environment)





Record/Playback Field measurements (Field-, long term tests)











**Automotive** 



**Rail transport** 



**Aviation / Aircraft cabin** 



Water transport







### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas General remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook

















### 2 Important Mobility Trends for the Next Decade









### 2 Variety of technologies and services









### 2 Information technology aspects and raw data (TUD-ITVS Framework)







Client/Server -> Database Software

### **Technology Candidates:**

IEEE 802.15.x (BLE, UWB, ZigBee, ...), IEEE 802.11.x (WiFi 2,4/5GHz); MobilComm (5G, 6G), IEEE 802.15.7 (LiFi)







### 2 IoT-Communication, Localization / Tracking and Sensing Cross Technolgies



Data rate / Accuracy / Detection resolution







### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas Gerneral remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook









### 3 Historical fundamental access - Antenna as a central element

















### 3 Timeless decision bases for communication and localization technologies





### **Shannon Channel Capacity Theorem**



### Cramer Rao Lower (Fisher) Bond











### **3 Antenna Basics - Description**

- History Faraday / Henry (1831) – first Experiments

Maxwell (1864) – Theory

Hertz (1886) – Experimental Proof Marconi (1901) – Technical Proof

Source: https://de. wikipedia. org







k Maxwell, Heinrich Hertz

Guglielmo Marconi

- Phenomenological description





Magnetical field Magnetical field
Electrical field Electrical field



Wellentypwandler









Hertzian dipole(1)

Hertzian dipole(2)





Antenna

Capacitor (Shift current charge carrier)

















### **3 Antenna Basics - Polarisation**

CIRCULAR
LINEAR
HORIZONTAL

Circular polarisation left- / right rotation

Horizontal polarisation

Vertical polarisation



Polarisation: patial orientation of the electric field

strength vector

⇒ Decoupling possibilities





|                                       | Vertical | Horizontal    | Circular<br>Right | Circular<br>Left |
|---------------------------------------|----------|---------------|-------------------|------------------|
| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1        | $\rightarrow$ | $\sim$            | J                |
| Vertical<br>T                         | 0 dB     | ∞             | 3 dB              | 3 dB             |
| Horizontal<br>→                       | ∞        | 0 dB          | 3 dB              | 3 dB             |
| Circular -<br>Right                   | 3 dB     | 3 dB          | 0 dB              | ∞                |
| Circular<br>left                      | 3 dB     | 3 dB          | ∞                 | 0 dB             |





### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas General remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook









4 Potentials of directional antennas – General remarks

- Antenna characteristics (general)

Reciprocity: Identity of the characteristic in the transmit/receive casel

Radiation characteristic: 3D field strength characteristiaraktistik

Directional diagram: Cross-section through radiation pattern

Gain: measure for directivity

Half width: 3dB opening angle

Forward/Backward ratio

Side lobe damping











270°











Nebenkeule

Nullstelle

### 4 Potentials of directional antennas - Multipath aspects









### 4 Potentials of directional antennas - Beamforming antennas



Beispiel einer Phasenbelegung der Elemente einer (5x5)-Patch-Antenne

|       | m = 0  | m = 1  | m = 2  | m = 3  | m = 4  |
|-------|--------|--------|--------|--------|--------|
| n = 4 | 275,8° | 333,5° | 391,5° | 449,3° | 507,2° |
| n = 3 | 206,8° | 264,6° | 322,6° | 380,3° | 438,3° |
| n = 2 | 137,9° | 195,7° | 253,6° | 311,4° | 369,4° |
| n = 1 | 68,9°  | 126,7° | 191,2° | 242,5° | 300,4° |
| n = 0 | 0,0°   | 57,9°  | 115,7° | 173,6° | 231,5° |

Source: www.authorstream.com

### ⇒ Einsatz in Intelligenten Antennensystemen







**MIMO: Multiple Input Multiple Output** 

Quellen: www.harticle.sapub.org







### 4 Potentials of directional antennas - Beamswitching antennas

















### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas Gerneral remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook









### **5 Reseach Examples - Challenges in dense multipath environments**









### **5 Current project activities (aviation and automotive)**











cockpit\_wall













### **5 Current project activities (aviation)**





Innovative air traffic (Wirless Cabin) CabiNET, CANARIA & ADKT

















### **5 Current project activities (automotive)**









eCall, GSM,
UMTS

LTE
zukünftig 5G





FM, DAB+, TMC,TPEG





automated driving IVS-AMP, IVS-LOK, Fast Sign, V2X4All

**Connected and** 







### **5 Selection: Evaluation using Inhouse parking scenario**























### 5 Multipath effects in ITS- / JCS-scenarios (Parking area)















### **5 Measurement Area (Parking area)**















### 5 Directional antenna result (Parking area)



















### 5 Different directional antenna results / Ranging (Parking area)









### 5 Beam-forming /-switching antenna results / RSSI + Delay (Parking area)











### **Agenda**

- 1) CV, Chair and Topics of University Research
- 2) Introduction ICT-based Goal Formulation
- 3) Historical fundamental access Antenna as a central element
- 4) Potentials of directional antennas Gerneral remarks
- 5) Reseach Examples Challenges in dense multipath environments
- 6) Conclusion and future outlook









### 6 Conclusion and future outlook

- ➤ Modern and innovative antennas will continue to play a fundamental role in the next generations of radio-based communicatiRefractionon and positioning systems (e.g. 5G, 6G ++ )
- ➤ The same principle will also apply to the optical free-space communication sector Visible Lite Coimmunication (VLC) or LiFi / but here with so-called Directional Lense Antennas





















**Contact:** 

Prof. Dr.-Ing. Oliver Michler
Technical University Dresden
Faculty of Transportation and Traffic Sciences
Institute of Traffic Telematics
Chair of Transport Systems Information Technology
Germany 01062 Dresden, Hettnerstr. 3

Phone.: +49 351 463-3 68 41 Mobile: +49 172 2745970

e-mail: oliver.michler@tu-dresden.de

http://tu-dresden.de/vkw/vis/itvs



# Thank you very much for your attention

