Hochschule Karlsruhe University of Applied Sciences

Institut für Energieeffiziente Mobilität

Approach to a Holistic Modelling of Cycling Dynamics

Yannick Rauch, Julia Rall, Maximilian Ruhe, Reiner Kriesten

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility Contact email: **yannick.rauch@ieem-ka.de**

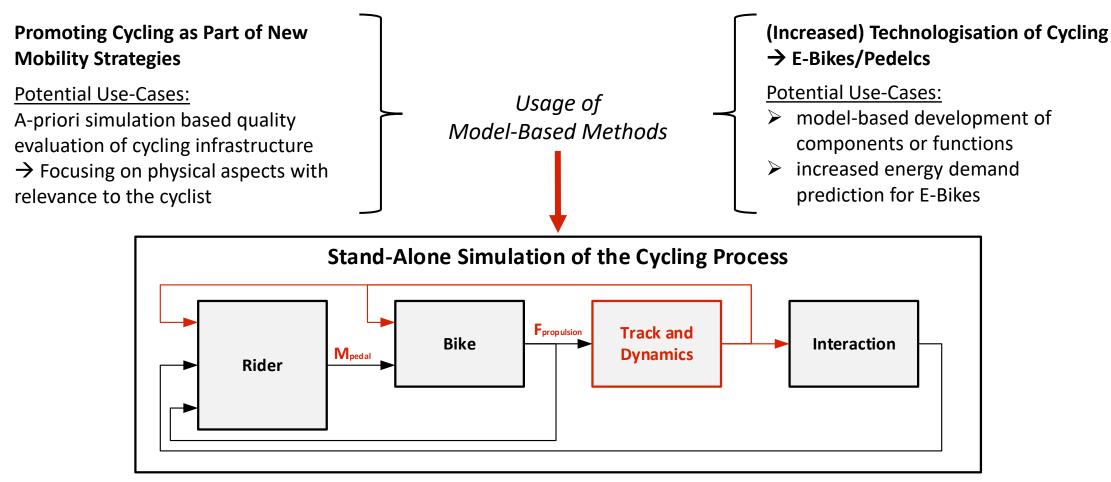
Gefördert durch:

Bundesministerium für Digitales und Verkehr

aufgrund eines Beschlusses des Deutschen Bundestages

Yannick Rauch M.Sc.

Education and Experience:

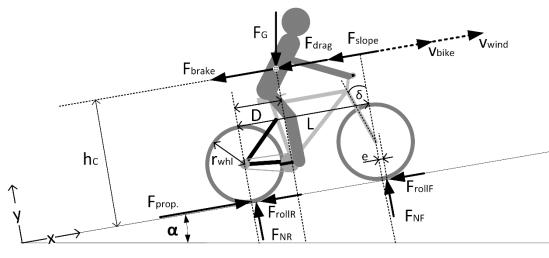

- Master's Degree in Automotive Systems Engineering from Karlsruhe University of Applied Sciences
- Research Assistant at Institute of Energy Efficient Mobility

Research Interests:

- Modelling and Simulation of Cycling
- Energy Management Systems for Electric Vehicles
- Energy Prediction and Management for E-Bikes/Pedelecs

Motivation and Use-Cases

→ Resulting dynamics define the physical model structure of bike and rider subsystems



Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility

Longitudinal Dynamics

Given as a-priori knowledge:

- trajectory of the cycled path
- further route properties (e.g. slope, wind)

Description of Longitudinal Dynamics:

$$m a = F_{prop.} - F_{brake} - F_{roll} - F_{slope} - F_{drag}$$
$$v(t) = \int a(t)dt$$

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility

Slope Resistance:

$$F_{slope} = F_G \sin(\alpha) = m g \sin(\alpha)$$

Drag Resistance:

$$F_{drag} = \frac{1}{2} \rho_{air} c_W A (v_{bike} - v_{wind})^2$$

Roll Resistance:

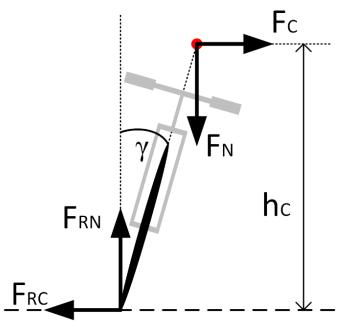
 $F_{roll} = F_N f_R = F_G \cos(\alpha) f_R = m g \cos(\alpha) f_R$ (f_R representing tyre flexing-, roll off- and surface-resistance)

Transient Resistance:

Longitudinal and rotational inertia represented in

Resulting Dynamics description:

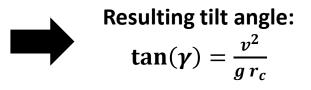
$$\lambda m a = F_{prop.} - F_{brake} - F_{roll} - F_{slope} - F_{drag}$$



Lateral Dynamics – Bicycle Balance

Modelling Conditions and Assumptions:

- given trajectory of the cycled path
 - \rightarrow given steering curve radius (r_c)
- stability of the bicycle is given
- ideal curve is assumed

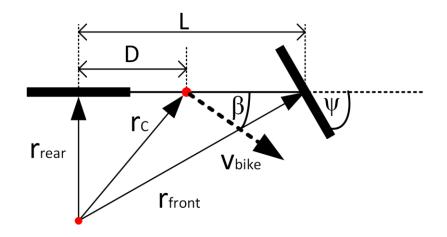

Representing the tilt angle (γ) of the bicycle caused by deflection of the centre of gravity in relation to the point of contact:

> determination by ratio between centrifugal (F_C) and normal force (F_N): $F_C = \frac{m v^2}{r_c}$

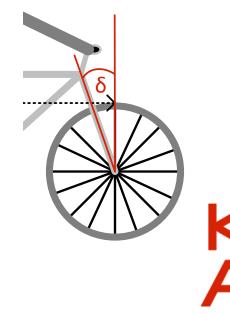
condition for stable cornering:

generation of equal torque by normal and centrifugal force

$$F_G h_c \sin(\gamma) = \frac{m v^2}{r_c} h_c \cos(\gamma)$$



Lateral Dynamics – Bicycle Steering


Modelling Conditions and Assumptions:

- given trajectory of the cycled path
 - \rightarrow given steering curve radius (r_c)
- ideal curve is assumed

<u>Calculating the turn angle (θ) of the handlebar:</u>

- > calculating yaw angle (β) around the centre of gravity $\sin(\beta) = \frac{D}{r_c}$
- > calculating front wheel angle (ψ) $\tan(\psi) = \frac{L}{D} \tan(\beta)$

Calculating turn angle of the handlebar (heta)

(assuming a small head tube angle (δ)

$$\tan(\boldsymbol{\theta}) = \frac{\boldsymbol{\psi}}{\sin(\boldsymbol{\delta})}$$

Braking Dynamics

Dynamic limitations of cycling occur primarily during braking *Fairly low propulsion force doesn't cause spinning wheels*

Intensive braking quickly exceeds friction limits

 \rightarrow wheel lock up

Calculating maximum braking force using static friction force:

 $F_{B_{max}} = F_S = \mu_s \ F_N = \mu_s \ m \ g \ \cos(\alpha)$

Considering static and dynamic normal force distribution:

$$F_{N_{front}} = \frac{F_N D - m a h_s}{L}$$
 and $F_{N_{rear}} = \frac{F_N (L - D) - m a h_s}{L}$

→ different maximum braking force on front and rear wheel

Braking in Curve Situations:

- maximum braking force is decreased
- > static friction also used for lateral traction

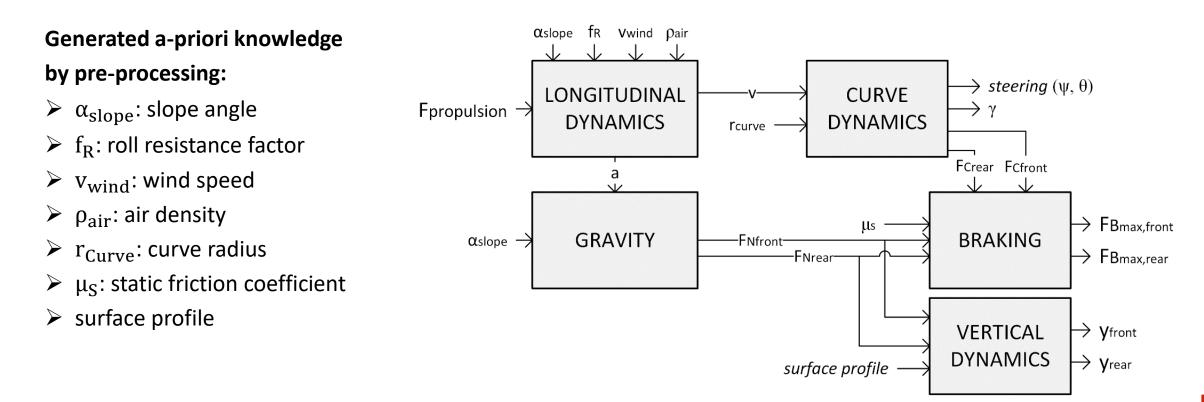
$$\Rightarrow F_{B_{max}} = \sqrt{F_S^2 - F_C^2}$$

centrifugal force used as lateral guidance force

Calculating resulting centrifugal force on front and rear wheel:

considering_speed, curve radius and weight distribution

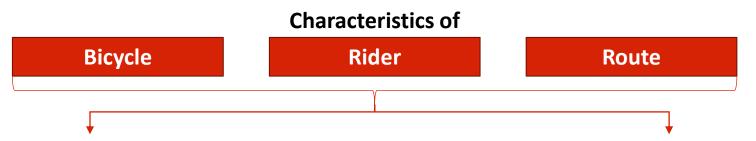
$$F_{C_{front}} = \frac{m D v^2}{L \sqrt{r_c^2 - D^2 + L^2}} \text{ and } F_{C_{rear}} = \frac{m (L-D) v^2}{L \sqrt{r_c^2 - D^2}}$$



Implementation

Resulting Model

+1


Physical equations derived by the dynamics description of cycling implemented in MATLAB/Simulink

Implementation

+1

Modelling Parameters

Ride Constant Parameters

For generic bicycles: rule-based derivation of parameters

- in dependence of the bicycle type and rider's physique:
 c_W-Value, frontal Area, centre of gravity position
- in dependence of the bicycle type:

head tube angle, wheelbase, spring-damper-parameters

in dependence of the tyre type:

vertical dynamic tyre properties

For specific bicycles:

- technical documentation
- > experimental determination, e.g. coasting experiment

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility

Distance Dependent Parameters

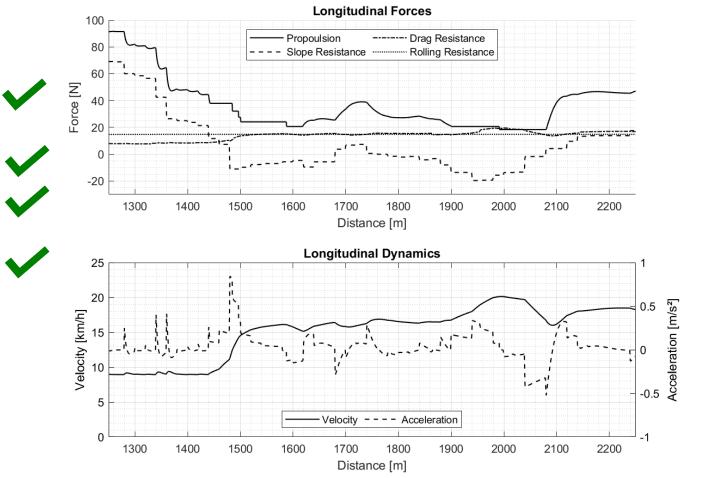
Synthetic routes:

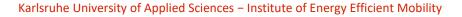
Required to self define all properties

Routes based on real infrastructure:

Self-developed route data generation algorithm, enables calculation of:

- curve radius based on route trajectory
- slope angle based on altitude
- air density based on altitude, air pressure, humidity and temperature
- resulting wind speed based on wind speed and direction
- rolling resistance factor and static friction coefficient based on underground as well as tyre type and pressure

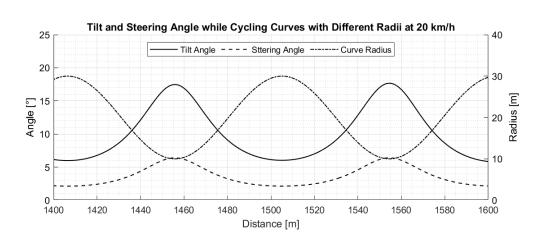

Simulation and Results


Longitudinal Dynamics

+1

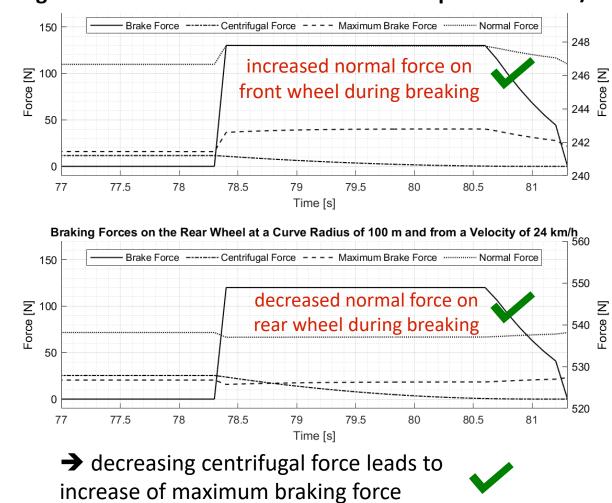
Simulation of cycling on a forest road

- Starting with an uphill section → significant slope resistance results in lower speed
- \succ end of uphill section \rightarrow increased speed
- \succ increased velocity \rightarrow drag resistance
- ➤ constant rolling resistance → due to no change of underground



Simulation and Results

Lateral and Braking Dynamics


Periodically cycling curve radius

between 10 to 30 meters at 20 km/h

narrower curves/smaller curve radius

→ increased steering and tilt angle

Braking at a curve radius of 100 m and from a speed of 24 km/h

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility

Conclusion and Future Work

+1

Conclusion:

- > Approach towards a holistic model of cycling dynamics to be used in standalone simulation of cycling
- Longitudinal, lateral and vertical dynamics as well as dynamic limitations are described as function of a propulsion force, trajectory and route properties
- Simulink implementation of achieved dynamics description
- > Verification shows that model is capable of plausibly representing the required cycling dynamics

Future Work:

- \succ Qualitative evaluation of the model \rightarrow further literature research and experiments for determining parameters
- > Evaluation of the dynamics model especially in comparison to real cycling situations
- > Extended consideration of vertical dynamics description
- Further optimisation and continuous development according to given requirements from the model environment or given use-cases

Hochschule Karlsruhe University of Applied Sciences

Institut für Energieeffiziente Mobilität

Thank your for your Attention

Yannick Rauch, Julia Rall, Maximilian Ruhe, Reiner Kriesten

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility Contact email: **yannick.rauch@ieem-ka.de**

Gefördert durch:

Bundesministerium für Digitales und Verkehr

aufgrund eines Beschlusses des Deutschen Bundestages

